cos 8
Solution
Let α = 8
cos 2α = 2 cos2 α - 1     (Double angle formula)
cos 2( 8 ) = 2 cos2 ( 8 ) - 1
cos ( 4 ) = 2 cos2 ( 8 ) - 1
1 + cos ( 4 ) = 2 cos2 ( 8 )
2 cos2 ( 8 ) = 1 + cos ( 4 )
= 1 + cos ( (3 + 4)π 4 )
= 1 + cos ( 4 + 4 )
= 1 + cos ( 4 + π )
= 1 + ( cos 4.cos π - sin 4.sin π )
2 cos2 ( 8 ) = 1 + ( -1 2 .(-1) - 1 2 .0 )
2 cos2 ( 8 ) = 1 + 1 2
= 2   + 1 2
= 2 + √ 2 2
cos2 ( 8 ) = 2 + √ 2 4
± 2 + 2 2 = cos 8
      ∴ cos 8      =       ± 2 + √ 2 2

sin 8
Solution
Let α = 8
cos 2α = 1 - 2 sin2 α     (Double angle formula)
cos 2( 8 ) = 1 - 2 sin2 ( 8 )
cos ( 4 ) = 1 - 2 sin2 ( 8 )
2 sin2 ( 8 ) + cos ( 4 ) = 1
2 sin2 ( 8 ) = 1 - cos ( 4 )
= 1 - cos ( (3 + 4)π 4 )
= 1 - cos ( 4 + 4 )
= 1 - cos ( 4 + π )
= 1 - ( cos 4.cos π - sin 4.sin π )
2 sin2 ( 8 ) = 1 - ( -1 2 .(-1) - 1 2 .0 )
2 sin2 ( 8 ) = 1 - 1 2
= 2   - 1 2
= 2 - √ 2 2
sin2 ( 8 ) = 2 - √ 2 4
± 2 - 2 2 = sin 8
      ∴ sin 8      =       ± 2 - √ 2 2