if n = 1, | 1 = 12, | ||
if n = 2, | 1 + 3 | = 4 | = 22 , |
if n = 3, | 1 + 3 + 5 | = 9 | = 32 , |
if n = 4, | 1 + 3 + 5 + 7 | = 16 | = 42, |
if n = 5, | 1 + 3 + 5 + 7 + 9 | = 25 | = 52 , |
if n = 6, | 1 + 3 + 5 + 7 + 9 + 11 | = 36 | = 62 , |
1 + 3 + 5 + ... + (2k - 1) + [ 2(k + 1) - 1] | = k2 + [2(k + 1) - 1] |
= k2 + 2k + 2 - 1 | |
= k2 + 2k + 1 | |
= (k + 1)2 |
1 + 2 + 3 + ... + k + (k + 1) | = k(k + 1) ⁄ 2 + (k + 1) |
= k2 + k + 2k + 2 ⁄2 | |
= k2 + 3k + 2 ⁄ 2 | |
= (k + 1)(k + 2) ⁄ 2 |
(1) For n = 1, | L.H.S = 1 . 3 = 3, |
R.H.S = (2 - 1)32 + 3 ⁄ 4 = 12 ⁄ 4 = 3. | |
L.H.S = R.H.S |
1 . 3 + 2 . 32 + 3 . 33 + ... + k . 3k + (k + 1) . 3k+1 | = (2k - 1)3k+1 + 3 ⁄ 4 + (k + 1)3k+1 |
= (2k - 1)3k+1 + 3 + 4(k + 1)3k+1 ⁄ 4 | |
= (6k + 3)3k+1 + 3 ⁄ 4 | |
= (2k + 1)3k+2 + 3 ⁄ 4 | |
= (2(k + 1) - 1)3k+2 + 3 ⁄ 4 |
ak+1 - bk+1 | = ak+1 - akb + akb - bk+1 |
= ak(a - b) + b(ak - bk). |
(1) For n = 5, | L.H.S | = 4(5) = 20 |
R.H.S | = 25 = 32 | |
L.H.S | < R.H.S |
4(k + 1) | = 4k + 4 |
< 2k + 4 | |
< 2k + 4k (since 4 < 4k) | |
< 2k + 2k | |
= 2 . 2k = 2k+1 |
(1) For n = 1, | L.H.S = 1 |
R.H.S = 31 - 1 ⁄ 2 = 1 | |
L.H.S = R.H.S |
1 + 3 + 32 + ... + 3k-1 + [3k] | = 3k - 1⁄ 2 + [3k] |
= 3k - 1 ⁄ 2 + 2 ⋅ 3k⁄2 | |
= 3k - 1 + 2 ⋅ 3k ⁄ 2 | |
= 3k + 2 ⋅ 3k - 1 ⁄ 2 | |
= 3k(1 + 2) - 1 ⁄ 2 | |
= 3k . 3 - 1 ⁄ 2 | |
= 3k+1 - 1 ⁄ 2 |
L.H.S | = | 13 |
= | 1 | |
R.H.S | = | ( 1 (1 + 1)⁄2 )2 |
= | ( 2⁄2 )2 | |
= | 12 | |
= | 1 | |
L.H.S | = | R.H.S |
13 + 23 + 33 + ... + k3 + [(k + 1)3] | = | [(k + 1) {(k + 1) + 1 } ⁄ 2]2 |
= | [(k + 1) (k + 2) ⁄ 2]2 |
13 + 23 + 33 + ... + k3 + [(k + 1)3] | = | [k (k + 1) ⁄ 2]2 + (k + 1)3 |
= | k 2 (k + 1)2 ⁄ 4 + 4 (k + 1)3⁄4 | |
= | k 2 (k + 1)2 + 4 (k + 1) 3 ⁄ 4 | |
= | k 2 (k + 1)2 + 4 (k + 1) (k + 1) 2 ⁄ 4 | |
= | (k + 1)2 ( k2 + 4 (k + 1)) ⁄ 4 | |
= | (k + 1)2 ( k2 + 4k + 4) ⁄ 4 | |
= | (k + 1)2 (k + 2)2 ⁄ 4 | |
= | [(k + 1) (k + 2) ⁄ 2]2 |
L.H.S | = | 23 |
= | 8 | |
R.H.S | = | 2 ⋅ 12 (1 + 1)2 |
= | 2 (2)2 | |
= | 8 | |
L.H.S | = | R.H.S |
23 + 43 + 63 + ... + (2k)3 + [8 (k+1)3] | = | 2k2 (k + 1)2 + [8 (k + 1)3] |
= | 2k2 (k + 1)2 + 8 (k + 1) (k + 1)2 | |
= | (k + 1)2 (2k2 + 8 (k + 1) ) | |
= | (k + 1)2 (2k2 + 8k + 8 ) | |
= | (k + 1)2 2 (k2 + 4k + 4 ) | |
= | (k + 1)2 2 (k + 2)2 | |
= | 2 (k + 1)2 (k + 2)2 |
L.H.S | = | 1 ⋅ 2 |
= | 2 | |
R.H.S | = | 1 (1 + 1) (1 + 2)⁄3 |
= | 2 (3)⁄3 | |
= | 2 | |
L.H.S | = | R.H.S |
L.H.S | = | 1⁄2 |
R.H.S | = | 1 - 1⁄21 |
= | 1 ⋅ 2⁄2 - 1⁄2 | |
= | 2 - 1⁄2 | |
= | 1⁄2 | |
L.H.S | = | R.H.S |
L.H.S | = | 1 |
R.H.S | = | 21 - 1 |
= | 2 - 1 | |
= | 1 | |
L.H.S | = | R.H.S |
1 + 2 + 22 + ... + 2k-1 + [2k] | = | 2k - 1 + 2k |
= | 2k + 2k - 1 | |
= | 2 ⋅ 2k - 1 | |
= | 2k ⋅ 21 - 1 | |
= | 2k + 1 - 1 |
L.H.S | = | 1⁄1 ⋅ 2 |
= | 1⁄2 | |
R.H.S | = | 1⁄1 + 1 |
= | 1⁄2 | |
L.H.S | = | R.H.S |
41 - 1 | = | 4 - 1 |
= | 3 |
4k + 1 - 1 | = | 4k ⋅ 41 - 1 |
= | 4 ⋅ 4k - 1 | |
= | 3 ⋅ 4k + 1 ⋅ 4k - 1 | |
= | 3 ⋅ 4k + 4k - 1 |
(k + 1)3 - (k + 1) + 3 | = | k3 + 3k2 + 3k + 1 - k - 1 + 3 |
= | k3 - k + 1 - 1 + 3 + 3k2 + 3k | |
= | k3 - k + 3 + 3(k2 + k) |
32n - 1 | = | 32 - 1 |
= | 9 - 1 | |
= | 8 |
32(k+1) - 1 | = | 32k + 2 - 1 |
= | 32k ⋅ 32 - 1 | |
= | 32k ⋅ 9 - 1 | |
= | 9 ⋅ 32k - 1 | |
= | 8 ⋅ 32k + 1 ⋅ 32k - 1 | |
= | 8 ⋅ 32k + 32k - 1 |
L.H.S | = | (3 + 1)2 |
= | 42 | |
= | 16 | |
R.H.S | = | 2 (3)2 |
= | 2 (9) | |
= | 18 | |
L.H.S | < | R..H.S |
(k + 1)2 | < | 2k2 |
Add | 4k + 2 at both sides | |
(k + 1)2 + 4k + 2 | < | 2k2 + 4k + 2 |
k2 + 2k + 1 + 4k + 2 | < | 2 (k2 + 2k + 1) |
k2 + 6k + 3 | < | 2 (k + 1)2 |
k2 + 4k + 4 | < | 2 (k + 1)2 (∵ for k ≥ 3, k2 + 4k + 4 < k2 + 6k + 3) |
∴ (k + 2)2 | < | 2 (k + 1)2 |
L.H.S | = | 2 (1) + 7 |
= | 9 | |
R.H.S | = | (1 + 3)2 |
= | 42 | |
= | 16 | |
L.H.S | < | R.H.S |
(2k + 7 + 2) | < | (k2 + 6k + 9 + 2) |
(2k + 9) | < | (k2 + 6k + 11) |
(2k + 9) | < | (k2 + 8k + 16) (∵ (k2 + 6k + 11) < ( k2 + 8k + 16) ) |
∴ (2k + 9) | < | (k + 4)2 |
x2 (1) - y2 (1) | = | x2 - y2 |
= | (x + y) (x - y) |
x2 (k +1) - y2 (k + 1) | = | x2k + 2 - y2k + 2 |
= | x2k ⋅ x2 - y2k ⋅ y 2 | |
= | x2 ⋅ x2k - y2k ⋅ y 2 | |
= | x2 (x2k - y2k + y 2k) - y2k ⋅ y2 | |
= | x2 (x2k - y2k) + x2 ⋅ y2k - y i>2k ⋅ y2 | |
= | x2 (x2k - y2k) + y2k (x2 - y2) |