In this chapter, we will study the basic properties and equations of circles and parabolas.
Equation of Circle | Center (h, k) | Radius r |
(x - 3)2 + (y - 5)2 = 16 | (3, 5) | 4 |
(x + 7)2 + (y - 2)2 = 9 | (-7, 2) | 3 |
x2 + y2 = 1 | (0, 0) | 1 |
x2 + (y - 3)2 = 49 | (0, 3) | 7 |
1. Find the center and radius of each circle:
(a) x2 + y2 = 16
Solution
(x - h)2 + (y - k)2 = r2
(x - 0)2 + (y - 0)2 = 42
center = (0, 0), radius = 4
(b) (x - 1)2 + (y - 4)2 = 25
Solution
(x - h)2 + (y - k)2 = r2
(x - 1)2 + (y - 4)2 = 52
center = (1, 4), radius = 5
(c) (x - 3)2 + (y + 5)2 = 49
Solution
(x - h)2 + (y - k)2 = r2
(x - 3)2 + (y + 5)2 = 72
center = (3, -5), radius = 7
(d) (x + 1)2 + y2 = 1
Solution
(x - h)2 + (y - k)2 = r2
(x + 1)2 + (y - 0)2 = 12
center = (-1, 0), radius = 1
(e) 2x2 + 2y2 - 12x + 8y - 24 = 0
Solution
2x2 + 2y2 - 12x + 8y - 24 = 0
x2 + y2 - 6x + 4y - 12 = 0
x2 - 6x + 9 - 9 + y2 + 4y + 4 - 4 - 12 = 0
(x2 - 6x + 9) - 9 + (y2 + 4y + 4) - 4 - 12 = 0
(x - 3)2 + (y + 2)2 = 25
(x - h)2 + (y - k)2 = r2
(x - 3)2 + (y + 2)2 = 52
center = (3, -2), radius = 5
(f) x2 + y2 + x + y -
1 ⁄ 2 = 0
Solution
comparing with
x2 + y2 + 2gx + 2fy + c = 0,
we get
2g = 1, 2f = 1, c = -
1⁄2
and so
g =
1⁄2
, f =
1⁄2
, c = -
1⁄2
.
Therefore, the center = (-g, -f) = (-
1⁄2, -
1⁄2
) and
$$\small{\text{radius} = \sqrt{g^2 + f^2 - c}}$$
$$\small{ = \sqrt{(- \dfrac{1}{2})^2 + (- \dfrac{1}{2})^2 - (- \dfrac{1}{2})}}$$
$$\small{ = \sqrt{\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{2}}}$$
$$\small{= \sqrt{\dfrac{2}{4} + \dfrac{1}{2}}}$$
$$\small{= \sqrt{\dfrac{1}{2} + \dfrac{1}{2}} = 1}$$
2. Find the standard equation of the circle satisfying the given conditions.
(a) center(3, -2), radius = 4.
Solution
The standard form of the equation of a circle is
(x - h)2 + (y - k)2 = r2
-h = 3, - k = -2 and r = 4
h = -3, k = 2
(x - 3)2 + (y + 2)2 = 42
(x - 3)2 + (y + 2)2 = 16
(b) center(2, 5) radius =
√
5
.
Solution
The standard form of the equation of a circle is
(x - h)2 + (y - k)2 = r2
-h = 2, - k = 5 and r =
√
5
h = -2, k = -5
(x - 2)2 + (y - 5)2 = (
√
5
)2
(x - 2)2 + (y - 5)2 = 5
(c) center (-4, 1), radius = 3.
Solution
The standard form of the equation of a circle is
(x - h)2 + (y - k)2 = r2
-h = -4, - k = 1 and r = 3
h = 4, k = -1
(x + 4)2 + (y - 1)2 = 32
(x + 4)2 + (y - 1)2 = 9
(d) center(-4, 8), circle is tangent to the x-axis.
Solution
Since the circle is tangent to the x-axis, its center lies on a line parallel to the x-axis, which is 8 units above the x-axis.
(h, k) = (-4, 8), r = 8
The standard form of the equation of a circle is
(x - h)2 + (y - k)2 = r2
(x - (-4) )2 + (y - 8)2 = 82
(x + 4)2 + (y - 8)2 = 64
(e) center(5, 8), circle is tangent to the y-axis.
Solution
Since the circle is tangent to the y-axis, its center lies on a line parallel to the y-axis, which is 5 units to the right of the y-axis.
(h, k) = (5, 8), r = 5
The standard form of the equation of a circle is
(x - h)2 + (y - k)2 = r2
(x - 5)2 + (y - 8)2 = 52
(x - 5)2 + (y - 8)2 = 25
(f) center(-3, -2), circle passes through the origin.
Solution
(h, k) = (-3, -2)
$$\small{ r = \sqrt{(x_1 - h)^2 + (y_1 - k)^2}} $$
$$\small{= \sqrt{(0 - (-3))^2 + (0 - (-2))^2}}$$
$$\small{= \sqrt{9 + 4} = \sqrt{13}} $$
The standard form of the equation of a circle is
(x - h)2 + (y - k)2 = r2
(x - (-3))2 + (y - (-2))2 = (
√
13
)2
(x + 3)2 + (y + 2)2 = 13
(g) center(4, -5), circle passes through (1, 3).
Solution
(h, k) = (4, -5), (x1, y1) = (1, 3)
$$\small{ r = \sqrt{(x_1 - h)^2 + (y_1 - k)^2}} $$
$$\small{= \sqrt{(1 - 4)^2 + (3 - (-5))^2}}$$
$$\small{= \sqrt{9 + 64} = \sqrt{73}} $$
The standard form of the equation of a circle is
(x - h)2 + (y - k)2 = r2
(x - 4)2 + (y - (-5))2 = (
√
73
)2
(x - 4)2 + (y + 5)2 = 73.
(h) diameter has end points (6, 1) and (-2, 3).
Solution
$$\small{\text{diameter} = \sqrt{(x_2 - x_1) + (y_2 - y_1)}}$$
$$\small{\sqrt{(-2 - 6)^2 + (3 - 1)^2}}$$
= √
64 + 4
=
√
68
$$\small{ \text{radius} = \dfrac{\sqrt{68}}{2} = \sqrt{\dfrac{68}{4}} = \sqrt{17}}$$
The center of a circle is the midpoint of its diameter.
M = (x1 + x2⁄2,
y1 + y2⁄2 )
= (6 - 2⁄2,
1 + 3⁄2 )
= (2, 2)
(h, k) = (2, 2)
The standard form of the equation of a circle is
(x - h)2 + (y - k)2 = r2
(x - 2)2 + (y - 2)2 = (
√
17
)2
(x - 2)2 + (y - 2)2 = 17.
3. Determine whether each equation represents a circle, a point or no graph. If the equation represents a circle, find the center and radius.
(a) x2 + y2 - 6x + 2y + 9 = 0
Solution
x2 + y2 - 6x + 2y + 9 = 0
x2 - 6x + 9 - 9 + y2 + 2y + 1 - 1 + 9 = 0
(x2 - 6x + 9) - 9 + (y2 + 2y + 1) - 1 + 9 = 0
(x2 - 6x + 9) + (y2 + 2y + 1) - 1 = 0
(x - 3)2 + (y + 1)2 = 1
The equation is a circle with center at (3, -1) and radius is 1.
(b) x2 + y2 - 4x - 6y + 13 = 0
Solution
x2 + y2 - 4x - 6y + 13 = 0
x2 -4x + 4 - 4 + y2 - 6y + 9 - 9 + 13 = 0
(x2 -4x + 4) - 4 + (y2 - 6y + 9) - 9 + 13 = 0
(x2 -4x + 4) + (y2 - 6y + 9) - 4 - 9 + 13 = 0
(x - 2)2 + (y - 3)2 = 0
The equation is a point.
(c) x2 + y2 + 10y + 26 = 0
Solution
x2 + y2 + 10y + 26 = 0
x2 + y2 + 10y + 25 - 25 + 26 = 0
x2 + (y2 + 10y + 25) - 25 + 26 = 0
x2 + (y + 5)2 + 1 = 0
x2 + (y + 5)2 = -1
The right hand side is less than zero, so the equation has no graph.
(d) 2x2 + 2y2 - 12x + 8y - 24 = 0
Solution
2x2 + 2y2 - 12x + 8y - 24 = 0
x2 + y2 - 6x + 4y - 12 = 0
x2 - 6x + 9 - 9 + y2 + 4y + 4 - 4 - 12 = 0
(x2 - 6x + 9) - 9 + (y2 + 4y + 4) - 4 - 12 = 0
(x - 3)2 + (y + 2)2 - 25 = 0
(x - 3)2 + (y + 2)2 = 25
(x - 3)2 + (y + 2)2 = 52
The equation is a circle with center at (3, -2) and radius is 5.
(e) x2 + y2 - 10x - 2y + 29 = 0
Solution
x2 + y2 - 10x - 2y + 29 = 0
x2 - 10x + 25 -25 + y2 - 2y + 1 - 1 + 29 = 0
(x2 - 10x + 25) -25 + (y2 - 2y + 1) - 1 + 29 = 0
(x2 - 10x + 25) + (y2 - 2y + 1) - 25 - 1 + 29 = 0
(x2 - 10x + 25) + (y2 - 2y + 1) = -3
The right hand side is less than zero, so the equation has no graph.
(f) 16x2 + 16y2 + 40x + 16y - 7 = 0
Solution
16x2 + 16y2 + 40x + 16y - 7 = 0
x2 + y2 + 40⁄16x + y -
7⁄16 = 0
x2 + 5⁄2x + 25⁄16 - 25⁄16 + y2 + y +
1⁄4 - 1⁄4 -
7⁄16 = 0
(x2 + 5⁄2x + 25⁄16) - 25⁄16 + (y2 + y +
1⁄4) - 1⁄4 -
7⁄16 = 0
(x2 + 5⁄2x + 25⁄16) - 25⁄16 + (y2 + y +
4⁄16) - 4⁄16 -
7⁄16 = 0
(x + 5⁄4)2 + (y +
1⁄2)2 = 36⁄16 =
9⁄4
(x + 5⁄4)2 + (y +
1⁄2)2 = (3⁄2)2
The equation is a circle with center at (- 5⁄4,
- 1⁄2) and radius is
3⁄2
(g) x2 ⁄ 4 + y2 ⁄ 4 = 1
Solution
x2 ⁄ 4 + y2 ⁄ 4 = 1
x2 + y2⁄4 = 1
x2 + y2 = 4
(x + 0)2 + (y + 0)2 = 22
The graph is a circle with center at (0, 0) and radius is 2.
(h) 2x2 + 2y2 + 8x + 7 = 0
Solution
2x2 + 2y2 + 8x + 7 = 0
x2 + y2 + 4x + 7⁄2 = 0
x2 + 4x + 4 - 4 + y2 + 7⁄2 = 0
(x2 + 4x + 4) - 4 + y2 + 7⁄2 = 0
(x2 + 4x + 4) + y2 - 4 + 7⁄2 = 0
(x + 2)2 + (y + 0)2 =
1⁄2
$$\small{ (x + 2)^2 + (y + 0)^2 = \left(\sqrt{\dfrac{1}{2}}\right)^2 = \left(\dfrac{1}{\sqrt{2}}\right)^2}$$
The graph is a circle with center at (-2, 0) and radius is
1⁄
√
2