In a rotation of axes, the origin remains fixed while the x-axis and the y-axis are rotated through an angle θ to a new position;
the new positions of the x and y axes are denoted by x' and y', respectively as shown in figure.
yyy'αrPx'xOθx'x
Here, the point P has the coordinates (x, y) relative to the xy-plane. We can express x and y in terms of x', y'
and θ.
As in figure, r denotes the distance from the origin to the point P, and α denotes the angle between the positive x'-axis and the ray from
O through P.
Then, by using definition of sine and cosine, we have x' = r cos α, y' = r sin α, x = r cos(θ + α), y = r sin(θ + α).
Next, x = r cos(θ + α)
= r(cos θ cos α - sin θ sin α)
= (r cos α)(cos θ) - (r sin α)(sin θ)
= x' cos θ - y' sin θ
Similarly, y = r sin(θ + α)
= r(sin θ cos α + cos θ sin α)
= (r cos α)(sin θ) + (r sin α)(cos θ)
= x' sin θ + y' cos θ
Now we have the following theorem.
Theorem
If the x and y axes are rotated through an angle θ, then the coordinates (x, y) of a point P relatively to the
xy-plane and the coordinates (x' , y') of the same point relative to the new x' and y' axes are related by the formula x' = x cos θ + y sin θ y' = -x sin θ + y cos θ.
Proof:
We have the rotation equations: x = x' cos θ - y' sin θ y = x' sin θ + y' cos θ.
Multiplying with sin θ and cos θ to the respective rotation equations gives: x sin θ = x' sin θ cos θ - y' sin2θ (1) y cos θ = x' sin θ cos θ + y' cos2θ (2)
Solving equations (1) and (2) y' = -x sin θ + y cos θ
Multiplying with cos θ and sin θ to the respective rotation equations gives: x cos θ = x' cos2θ - y' sin θ cos θ (3) y sin θ = x' sin2θ + y' sin θ cos θ (4)
Adding equations (3) and (4) gives x' = x cos θ + y sin θ
So, we have the formulas x' = x cos θ + y sin θ y' = -x sin θ + y cos θ.
Example 12
Find the new coordinates of the point (1, 2) if the coordinate axes are rotated through an angle of θ = 30° Solution
We have x = 1, y = 2,
cos θ = cos 30° =
√
3⁄2,
sin θ = sin 30° = 1⁄2
Then x' = x cos θ + y sin θ x' = 1(
√
3⁄2)
+ 2(1⁄2)
=
√
3⁄2 + 1 y' = - x sin θ + y cos θ y' = -1(1⁄2) + 2(
√
3⁄2) =
- 1⁄2 +
√
3.
Therefore, the new coordinates are
(
√
3⁄2 + 1, -
1⁄2 +
√
3)
eliminating the x'y'-Term
We have the general equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0
with B ≠ 0.
We substitute x = x' cos θ - y' sin θ and y = x' sin θ + y' cos θ
in the general equation, then A'(x')2 + B'x'y' + C'(y')2 + D'x' + E'y' + F' = 0
where A' = A cos2θ + B cos θ sin θ + C sin2θ, B' = B(cos2θ - sin2θ) + 2(C - A) sin θ cos θ,
= B(cos 2θ) - (A - C) sin 2θ, C' = A sin θ - B sin θ cos θ + C cos2θ, D = D cos θ + E sin θ, E = -D sin θ + E cos θ, F' = F.
To eliminate the x'y'-term, choose θ such that B' = 0.
So B(cos 2θ) - (A - C) sin 2θ = 0
cot 2θ = A - C⁄B.
Note
1. If cot 2θ = 0, then 2θ = 90° so that θ = 45° .
2. If cot 2θ ≠ 0, first find cos 2θ to obtain the correct acute angle θ.
Then we have
if B' = 0 , then cot 2θ = A - C⁄B .
We can prove that B'2 - 4A'C' = B2 - 4AC,
and since B' = 0, we have B2 - 4AC = - 4A'C' .
If B2 - 4AC = 0, then -4 A'C' = 0 and we have A' = 0 or C' = 0.
When A' = 0, C'y'2 + D'x' + E'y' + F' = 0.
When C' = 0, A'x'2 + D'x' + E'y' + F' = 0.
This means that if B2 - 4AC = 0, after rotation with θ, then the general equation
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 becomes the standard form of the equation of a parabola.
The rotation of the coordinate axes through an angle θ transforms the equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0
into the form A'(x')2 + B'x'y' + C'(y')2 + D'x' + E'y' + F' = 0
has the following rotation invariants.
1. F = F'
2. A + C = A' + C'
3. B2 - 4AC = B'2 - 4A'C'
Example 13.
Rotate the coordinate axes to remove the xy-term of the equation
3x2 - 2√
3xy + y2 + 2x +
2√
3y = 0
in x'y'-coordinate system. Then sketch the graph. Solution
3x2 - 2√
3xy + y2 + 2x +
2√
3y = 0
Comparing with the general equation, we get A = 3, B = -2√
3 ,
C = 1.
Therefore B2 - 4AC = (-2√
3 )2 - 4(3)(1) = 0 and
cot 2θ = A - C⁄B =
3 - 1⁄
-2√
3 = - 1⁄
√
3 .
Thus,
2θ = 120° and so θ = 60° .
Next,
sin θ = sin 60° = √
3⁄2 and
cos θ = cos 60° = 1⁄2 .
By using x = x' cos θ - y' sin θ and y = x' sin θ + y' cos θ, we get x = 1⁄2x' -
√
3⁄2y'
and y =
√
3⁄2x'
+
1⁄2y' .
By substituting
x = 1⁄2x' -
√
3⁄2y'
and y = √
3⁄2x' +
1⁄2y' in given equation, we get 3⁄4((x')2 -
2√
3x'y' + 3(y')2) -
√
3⁄2 (x' -
√
3y')(√
3x' + y')
+ 1⁄4(3(x')2 +
2√
3x'y' + (y')2) + x' -
√
3y' + 3x'
+ √
3y' = 0
and then
(y')2 = -x'.
We see that the new conic is a parabola with vertex (0, 0).
Example 14.
Rotate the coordinate axes to remove the xy-term of the equation
16x2 - 24xy + 9y2 + 100x - 200y + 100 = 0
in x'y'-coordinate system. Then sketch the graph. Solution
16x2 - 24xy + 9y2 + 100x - 200y + 100 = 0
Comparing with the general equation, we get A = 16, B = -24 , C = 9.
We find that B2 - 4AC = (-24)2 - 4(16)(9) = 0 and
cot 2θ = A - C⁄B =
16 - 9⁄-24 = -
7⁄24.
Using trigonometric identities, we see that
cos 2θ = - 7⁄25.
Therefore,
sin θ = 4⁄5 and cos θ =
3⁄3.
We get x = 3⁄5x' -
4⁄5y' and y = 4⁄5x' +
3⁄5y' .
Substituting these values into the given equation, we get
25(y')2 - 100x' - 200y' + 100 = 0
(y')2 - 8y' = 4x' - 4
(y' - 4)2 = 4x' + 12
(y' - 4)2 = 4(x' + 3).
We see that the new conic in x'y'-plane is a parabola with vertex (-3, 4).
Since sin θ = 4⁄5, we find that θ = 53.1° .
Exercise 6.4
Rotate the coordinate axes to remove the xy-term. Then sketch the graph.
1. x2 +
2√
3xy + 3y2 +
2√
3x - 2y = 0 Solution x2 +
2√
3xy + 3y2 +
2√
3x - 2y = 0
Comparing with the general equation, we get A = 1, B = 2√
3 , C = 3
Therefore B2 = -4AC =
(2√
3 )2 - 4(1)(3)
= 12 - 12 = 0
cot 2θ = A - C⁄B =
1 - 3⁄
2√
3 = -2⁄
√
3
2θ = 120°
θ = 60°
sin θ = sin 60° =
√
3⁄2, cos θ = cos 60° =
1⁄2
By using x = x' cos θ - y' sin θ and y = x' sin θ + y' cos θ, x = 1⁄2x' -
√
3⁄2y' , y =
√ 3 ⁄2x' + 1⁄2y'
By substituting
x = 1⁄2x' -
√
3⁄2y' and y =
√ 3 ⁄2x' + 1⁄2y' in given equation,
(1⁄2x' -
√
3⁄2y')2 +
2√
3(
1⁄2x' -
√ 3 ⁄2y')
(
√ 3 ⁄2x' + 1⁄2y') +
3(
√ 3 ⁄2x' + 1⁄2y')2 +
2√
3(
1⁄2x' -
√ 3 ⁄2y') -
2(
√ 3 ⁄2x' + 1⁄2y') = 0 1⁄4x'2 -
√
3⁄2x'y' +
3⁄4y'2 +
2√
3(
√
3⁄4x'2 +
1⁄4x'y' -
3⁄4x'y' -
√
3⁄4y'2) + 3
(3⁄4x'2 +
√
3⁄2x'y' +
1⁄4y'2) +
√
3x' -
3 y' -
√
3x' - y' = 0 1⁄4x'2 -
√
3⁄2x'y' +
3⁄4y'2 +
3⁄2x'2
+
√ 3 ⁄2x'y' -
3√ 3 ⁄2x'y' - 3⁄2y'2 +
9⁄4x'2
+
3√ 3 ⁄2x'y' + 3⁄4y'2 +
√ 3 x' - 3y'
-
√ 3 x' - y' = 0 1⁄4x'2 +
3⁄4y'2 +
3⁄2x'2
- 3⁄2y'2 +
9⁄4x'2
+ 3⁄4y'2
- 4y'
= 0 1⁄4x'2 +
3⁄4y'2 +
6⁄4x'2
- 6⁄4y'2 +
9⁄4x'2
+ 3⁄4y'2
- 16 ⁄4y'
= 0 1⁄4
(x'2 + 3y'2 + 6x'2 - 6y'2 + 9x'2 + 3y'2 - 16y')
= 0 x'2 + 3y'2 + 6x'2 - 6y'2 + 9x'2 + 3y'2 - 16y'
= 0
16x'2 + 6y'2 - 6y'2 - 16y' = 0
16x'2 - 16y' = 0
16(x'2 - y') = 0 x'2 - y' = 0 x'2 = y'
(x' - 0)2 = (y' + 0)
The new conic is a parabola with vertex (0, 0).
2. 9x2 - 24xy + 16y2 - 80x - 60y + 100 = 0 Solution
9x2 - 24xy + 16y2 - 80x - 60y + 100 = 0
Comparing with the general equation, A = 9, B = -24 , C = 16 B2 = -4AC = (-24)2 - 4(9)(16)
= 576 - 576 = 0
cot 2θ = A - C⁄B =
9 - 16⁄-24 =
-7⁄-24 =
7⁄24