Rotation of Axes

In a rotation of axes, the origin remains fixed while the x-axis and the y-axis are rotated through an angle θ to a new position; the new positions of the x and y axes are denoted by x' and y', respectively as shown in figure.
y (x,y) { (x', y') x O θ
y y y' α r P x' x O θ x' x
fig 6.4-2

Here, the point P has the coordinates (x, y) relative to the xy-plane. We can express x and y in terms of x', y' and θ.

As in figure, r denotes the distance from the origin to the point P, and α denotes the angle between the positive x'-axis and the ray from O through P.
Then, by using definition of sine and cosine, we have
x' = r cos α,   y' = r sin α,
x = r cos(θ + α),   y = r sin(θ + α).
Next,
x = r cos(θ + α)
= r(cos θ cos α - sin θ sin α)
= (r cos α)(cos θ) - (r sin α)(sin θ)
= x' cos θ - y' sin θ

Similarly,
y = r sin(θ + α)
= r(sin θ cos α + cos θ sin α)
= (r cos α)(sin θ) + (r sin α)(cos θ)
= x' sin θ + y' cos θ


Now we have the following theorem.

Theorem

If the x and y axes are rotated through an angle θ, then the coordinates (x, y) of a point P relatively to the xy-plane and the coordinates (x' , y') of the same point relative to the new x' and y' axes are related by the formula
x' = x cos θ + y sin θ
y' = -x sin θ + y cos θ.

Proof:
We have the rotation equations:
x = x' cos θ - y' sin θ
y = x' sin θ + y' cos θ.

Multiplying with sin θ and cos θ to the respective rotation equations gives:
x sin θ = x' sin θ cos θ - y' sin2 θ           (1)
y cos θ = x' sin θ cos θ + y' cos2 θ           (2)

Solving equations (1) and (2)
y' = -x sin θ + y cos θ

Multiplying with cos θ and sin θ to the respective rotation equations gives:
x cos θ = x' cos2 θ - y' sin θ cos θ           (3)
y sin θ = x' sin2 θ + y' sin θ cos θ           (4)
Adding equations (3) and (4) gives
x' = x cos θ + y sin θ
So, we have the formulas
x' = x cos θ + y sin θ
y' = -x sin θ + y cos θ.

Example 12
Find the new coordinates of the point (1, 2) if the coordinate axes are rotated through an angle of θ = 30°
Solution
We have x = 1,   y = 2,
cos θ = cos 30° = 32,
sin θ = sin 30° = 12
Then
x' = x cos θ + y sin θ
x' = 1( 32) + 2(12)
= 32 + 1
y' = - x sin θ + y cos θ
y' = -1(12) + 2( 32)
= - 12 + √ 3.
Therefore, the new coordinates are ( 32 + 1, - 12 + √ 3)

eliminating the x'y'-Term

We have the general equation
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0
with B ≠ 0.
We substitute
x = x' cos θ - y' sin θ   and
y = x' sin θ + y' cos θ
in the general equation, then
A'(x')2 + B'x'y' + C'(y')2 + D'x' + E'y' + F' = 0
where
A' = A cos2 θ + B cos θ sin θ + C sin2 θ,
B' = B(cos2 θ - sin2 θ) + 2(C - A) sin θ cos θ,
= B(cos 2θ) - (A - C) sin 2θ,
C' = A sin θ - B sin θ cos θ + C cos2 θ,
D = D cos θ + E sin θ,
E = -D sin θ + E cos θ,
F' = F.

To eliminate the x'y'-term, choose θ such that B' = 0.
So
B(cos 2θ) - (A - C) sin 2θ = 0
cot 2θ = A - CB.

Note
1.   If cot 2θ = 0, then 2θ = 90° so that θ = 45° .
2.   If cot 2θ ≠ 0, first find cos 2θ to obtain the correct acute angle θ.
Then we have
if B' = 0 , then cot 2θ = A - CB .

We can prove that
B'2 - 4A'C' = B2 - 4AC,
and since B' = 0, we have
B2 - 4AC = - 4A'C' .
If B2 - 4AC = 0, then -4 A'C' = 0 and we have
A' = 0 or C' = 0.
When A' = 0, C'y'2 + D'x' + E'y' + F' = 0.
When C' = 0, A'x'2 + D'x' + E'y' + F' = 0.
This means that if B2 - 4AC = 0, after rotation with θ, then the general equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 becomes the standard form of the equation of a parabola.

The rotation of the coordinate axes through an angle θ transforms the equation
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0
into the form
A'(x')2 + B'x'y' + C'(y')2 + D'x' + E'y' + F' = 0
has the following rotation invariants.
1.   F = F'
2.   A + C = A' + C'
3. B2 - 4AC = B'2 - 4A'C'

Example 13.
Rotate the coordinate axes to remove the xy-term of the equation
3x2 - 2√ 3 xy + y2 + 2x + 2√ 3 y = 0

in x'y'-coordinate system. Then sketch the graph.
Solution
3x2 - 2√ 3 xy + y2 + 2x + 2√ 3 y = 0

Comparing with the general equation, we get
A = 3, B = -2√ 3 , C = 1.
Therefore   B2 - 4AC = (-2√ 3 )2 - 4(3)(1) = 0 and
cot 2θ = A - CB = 3 - 1 -2√ 3 = - 1 3 .
Thus,
2θ = 120° and so θ = 60° .
Next,
sin θ = sin 60° = 3 2   and
cos θ = cos 60° = 12 .
By using   x = x' cos θ - y' sin θ   and
y = x' sin θ + y' cos θ, we get
x = 12x' - 3 2y'   and
y = 3 2x' + 12y' .
By substituting x = 12x' - 3 2y'   and
y = 3 2x' + 12y' in given equation, we get
34((x')2 - 2√ 3 x'y' + 3(y')2) - 3 2 (x' - √ 3 y')(√ 3 x' + y') + 14(3(x')2 + 2√ 3 x'y' + (y')2) + x' - √ 3 y' + 3x' + √ 3 y' = 0
and then
(y')2 = -x'.
We see that the new conic is a parabola with vertex (0, 0).
y 3x²-2√3 xy + y² + 2x + 2√3 y = 0 y' x' 60° x 60° y'² = -x' 0'

Example 14.
Rotate the coordinate axes to remove the xy-term of the equation
16x2 - 24xy + 9y2 + 100x - 200y + 100 = 0
in x'y'-coordinate system. Then sketch the graph.
Solution
16x2 - 24xy + 9y2 + 100x - 200y + 100 = 0
Comparing with the general equation, we get
A = 16, B = -24 , C = 9.
We find that B2 - 4AC = (-24)2 - 4(16)(9) = 0 and
cot 2θ = A - CB = 16 - 9-24 = - 724.
Using trigonometric identities, we see that
cos 2θ = - 725.
Therefore,
sin θ = 45   and   cos θ = 33.
We get   x = 35 x' - 45y'   and
y = 45 x' + 35y' .
Substituting these values into the given equation, we get
25(y')2 - 100x' - 200y' + 100 = 0
(y')2 - 8y' = 4x' - 4
(y' - 4)2 = 4x' + 12
(y' - 4)2 = 4(x' + 3).
We see that the new conic in x'y'-plane is a parabola with vertex (-3, 4).
Since sin θ = 45 , we find that θ = 53.1° .
y 16x²-24xy+9y²+100x-200y+100 = 0 y' -3 x' 53.1° x 4 (y'-4)² = 4(x'+3) 0

Exercise 6.4

Rotate the coordinate axes to remove the xy-term. Then sketch the graph.
1. x2 + 2√ 3 xy + 3y2 + 2√ 3 x - 2y = 0
Solution
x2 + 2√ 3 xy + 3y2 + 2√ 3 x - 2y = 0
Comparing with the general equation, we get
A = 1, B = 2√ 3   , C = 3
Therefore
B2 = -4AC = (2√ 3 )2 - 4(1)(3)
= 12 - 12 = 0
cot 2θ = A - CB = 1 - 3 2√ 3 = -2 3
2θ = 120°
θ = 60°
sin θ = sin 60° = 3 2,   cos θ = cos 60° = 12
By using x = x' cos θ - y' sin θ and
y = x' sin θ + y' cos θ,
x = 12 x' - 3 2   y' ,
y = 3 2 x' + 12 y'
By substituting x = 12 x' - 3 2   y' and
y = 3 2 x' + 12 y' in given equation,
(12 x' - 3 2 y')2 + 2√ 3( 12 x' - 3 2 y') ( 3 2 x' + 12 y') + 3( 3 2 x' + 12 y')2 + 2√ 3( 12 x' - 3 2 y') - 2( 3 2 x' + 12 y') = 0
14x'2 - 3 2 x'y' + 34 y'2 + 2√ 3( 3 4 x'2 + 14 x'y' - 34 x'y' - 3 4 y'2) + 3 (34x'2 + 3 2 x'y' + 14y'2) + √ 3 x' - 3 y' - √ 3 x' - y' = 0
14x'2 - 3 2 x'y' + 34 y'2 + 32x'2 + 3 2 x'y' - 3√ 3 2 x'y' - 32 y'2 + 94x'2 + 3√ 3 2 x'y' + 34y'2 + √ 3 x' - 3y' - √ 3 x' - y' = 0
14x'2 + 34 y'2 + 32x'2 - 32 y'2 + 94x'2 + 34y'2 - 4y' = 0
14x'2 + 34 y'2 + 64x'2 - 64 y'2 + 94x'2 + 34y'2 - 16 4y' = 0
14 (x'2 + 3y'2 + 6x'2 - 6y'2 + 9x'2 + 3y'2 - 16y') = 0
x'2 + 3y'2 + 6x'2 - 6y'2 + 9x'2 + 3y'2 - 16y' = 0
16x'2 + 6y'2 - 6y'2 - 16y' = 0
16x'2 - 16y' = 0
16(x'2 - y') = 0
x'2 - y' = 0
x'2 = y'
(x' - 0)2 = (y' + 0)
The new conic is a parabola with vertex (0, 0).
y x²+2√3 xy + 3y² + 2√3 x - 2y = 0 y' x' 60° x 60° x'² = y' (0,0)

2. 9x2 - 24xy + 16y2 - 80x - 60y + 100 = 0
Solution
9x2 - 24xy + 16y2 - 80x - 60y + 100 = 0
Comparing with the general equation,
A = 9, B = -24 , C = 16
B2 = -4AC = (-24)2 - 4(9)(16)
= 576 - 576 = 0
cot 2θ = A - CB = 9 - 16-24 = -7-24 = 724
24 7 25
cos 2θ = 725
cos 2θ = 2 cos2 θ - 1
2 cos2 θ - 1 = 725
2 cos2 θ = 725 + 1
2 cos2 θ = 3225
cos2 θ = 1625
cos θ = 45
sin2 θ + cos2 θ = 1
sin2 θ + 1625 = 1
sin2 θ = 1 - 1625 = 925
sin θ = 35
x = x' cos θ - y' sin θ ,
y = x' sin θ + y' cos θ,
x = 45x' - 35y' ,
y = 35x' + 45y'
Substituting these values into the given equation,
9(45x' - 35y')2 - 24 (45x' - 35y') (35x' + 45y') + 16 (35x' + 45y')2 - 80 (45x' - 35y') - 60 (35x' + 45y') + 100 = 0
9(1625x'2 - 2425x'y' + 925y'2) - 24 (1225x'2 + 1625x'y' - 925x'y' - 1225y'2) + 16 (925x'2 + 2425x'y' + 1625y'2) - 3205x' + 2405y' - 1805x' - 2405y' + 100 = 0
14425x'2 - 21625x'y' + 8125y'2 - 28825x'2 - 38425x'y' + 21625x'y' + 28825y'2 + 14425x'2 + 38425x'y' + 25625y'2 - 3205x' - 1805x' + 100 = 0
14425x'2 + 8125y'2 - 28825x'2 + 28825y'2 + 14425x'2 + 25625y'2 - 3205x' - 1805x' + 100 = 0
28825x'2 + 8125y'2 - 28825x'2 + 28825y'2 + 25625y'2 - 3205x' - 1805x' + 100 = 0
8125y'2 + 28825y'2 + 25625y'2 - 3205x' - 1805x' + 100 = 0
62525y'2 - 5005x' + 100 = 0
25y'2 - 100x' + 100 = 0
25(y'2 -4x' + 4) = 0
y'2 -4x' + 4 = 0
y'2 = 4x' - 4
y'2 = 4(x' - 1)
(y' - 0)2 = 4(x' - 1)
The new conic in 'y'-plane is a parabola with vertex (1, 0).
Since sin θ = 35, θ = 36.9°
y y' x' 36.9° x 36.9° y'² = 4(x'-1)

3. x2 - 2xy + y2 - 20x - 20y + 100 = 0
Solution
x2 - 2xy + y2 - 20x - 20y + 100 = 0
Comparing with the general equation,
A = 1, B = -2 , C = 1
B2 = -4AC = (-2)2 - 4(1)(1)
= 4 - 4 = 0
cot 2θ = A - CB = 1 - 1-2 = 0-2 = 0
2θ = 90°
θ = 45°
cos θ = cos 45° = 2 2   , sin θ = sin 45° = 2 2
x = x' cos θ - y' sin θ ,
y = x' sin θ + y' cos θ
x = 2 2 x' - 2 2 y'
y = 2 2 x' + 2 2 y'
Substituting these values into the given equation,
( 2 2 x' - 2 2 y')2 - 2( 2 2 x' - 2 2 y') ( 2 2 y' + 2 2 x') + ( 2 2 y' + 2 2 x')2 - 20( 2 2 x' - 2 2 y') - 20( 2 2 y' + 2 2 x') + 100 = 0
12x'2 - x'y' + 12y'2 - 2(12x'y' + 12x'2 - 12y'2 - 12x'y') + 12y'2 + x'y' + 12x'2 - 10√ 2 x' + 10√ 2 y'- 10√ 2 y' - 10√ 2 x' + 100 = 0
12x'2 + 12y'2 - 2(12x'y' + 12x'2 - 12y'2 - 12x'y') + 12y'2 + 12x'2 - 10√ 2 x' - 10√ 2 x' + 100 = 0
12 x'2 + 12y'2 - x'y' - x'2 + y'2 + x'y' + 12y'2 + 12x'2 - 20√ 2 x' + 100 = 0
x'2 + y'2 - x'2 + y'2 - 20√ 2 x' + 100 = 0
2y'2 - 20 √ 2 x' + 100 = 0
2(y'2 - 10√ 2 x' + 50) = 0
y'2 - 10√ 2 x' + 50 = 0
y'2 = 10√ 2 x' - 50
y'2 = 10√ 2 x' - 5 ⋅ 10 2 2
= 10√ 2 (x' - 5 2 )
= 10√ 2 (x' - 5√ 2 2)
The new conic in x'y'-plane is a parabola with ( 5 √ 2 2 , 0)
y y' x' 45° x 45° y'² = 10√2(x'-(5√2)/2)

4. 16x2 + 24xy + 9y2 - 130x + 90y = 0
Solution
16x2 + 24xy + 9y2 - 130x + 90y = 0
Comparing with the general equation,
A = 16 , B = 24 , C = 9
B2 - 4AC = 242 - 4(16)(9)
= 576 - 576 = 0
cot 2θ = A - CB = 16 - 924 = 724
24 7 25
cos 2θ = 725
cos 2θ = 2 cos2 θ - 1
2 cos2 θ - 1 = 725
2 cos2 θ = 725 + 1
2 cos2 θ = 3225
cos2 θ = 1625
cos θ = 45
sin2 θ + cos2 θ = 1
sin2 θ + 1625 = 1
sin2 θ = 1 - 1625 = 925
sin θ = 35
x = x' cos θ - y' sin θ ,
y = x' sin θ + y' cos θ,
x = 45x' - 35y' ,
y = 35x' + 45y'
Substituting these values into the given equation,
16(45x' - 35y')2 + 24 (45x' 35y') (35x' + 45y') + 9 (35x' + 45y')2 - 130 (45x' - 35y') + 90 (35x' + 45y') = 0
16(1625x'2 - 2425x'y' + 925y'2) + 24 (1225x'2 + 1625x'y' - 925x'y' - 1225y'2) + 9 (925x'2 + 2425x'y' + 1625y'2) - 5205x' + 3905y' + 2705x' + 3605y' = 0
25625x'2 - 38425x'y' + 14425y'2 + 28825x'2 + 38425x'y' - 21625x'y' - 28825y'2 + 8125x'2 + 21625x'y' + 14425y'2 - 2505x' + 7505y' = 0
25625x'2 + 28825y'2 + 28825x'2 - 28825y'2 + 8125x'2 - 50x' + 150y' = 0
62525x'2 - 50x' + 150y' = 0
25x'2 - 25 ⋅ 2x' + 25 ⋅ 6y' = 0
25(x'2 -2x' + 6y') = 0
x'2 -2x' + 6y' = 0
x'2 - 2x' = - 6y'
x'2 - 2x' + 1 = -6y' + 1
(x' - 1)2 = -6(y' - 16)
The new conic in x'y'-plane is a parabola with vertex (1, 16)

y y' x' 36.9° x 36.9° (x'-1)² = -6(y'-1/6)

5. 3x2 + 2√ 3 xy + y2 - 8x + 8√ 3 y = 0

Solution
3x2 + 2√ 3 xy + y2 - 8x + 8√ 3 y = 0

Comparing with the general equation, we get
A = 3, B = 2√ 3   , C = 1
Therefore
B2 = -4AC = (2√ 3 )2 - 4(3)(1)
= 12 - 12 = 0
cot 2θ = A - CB = 3 - 1 2√ 3 = 1 3
2θ = 60°
θ = 30°
cos θ = cos 30° = 3 2,   sin θ = sin 30° = 12
By using x = x' cos θ - y' sin θ and
y = x' sin θ + y' cos θ,
x = 3 2 x' - 12  y' ,
y = 12x' + 3 2 y'
By substituting x = 3 2 x' - 12y' and
y = 12x' + 3 2 y' in given equation,
3 ( 3 2 x' - 12y' )2 + 2√ 3 ( 3 2 x' - 12y' ) (12x' + 3 2 y') + (12x' + 3 2 y')2 -8( 3 2 x' - 12y') + 8√ 3 (12 x' + 3 2 y') = 0
3(34x'2 - 3 2 x'y' + 14 y'2) + 2√ 3( 3 4 x'2 + 34 x'y' - 14 x'y' - 3 4 y'2) + 14x'2 + 3 2 x'y' + 34y'2 - 4√ 3 x' + 4y' + 4√ 3 x' + 12y' = 0
94x'2 - 3√ 3 2 x'y' + 34y'2 + 32x'2 + 3√ 3 2 x'y' - 3 2 x'y' - 32 y'2 + 14x'2 + 3 2 x'y' + 3 4 y'2 + 16y' = 0
94x'2 + 3 4 y'2 + 64x'2 - 64y'2 + 14 x'2 + 34y'2 + 16y' = 0
164x'2 + 6 4 y'2 - 6 4 y'2 + 16y' = 0
4x'2 + 4⋅4y' = 0
4(x'2 + 4y') = 0
x'2 + 4y' = 0
x'2 = -4y'
(x - 0)2 = -4(y- 0)
The new conic is a parabola with vertex (0, 0).

y 3x²+2√3xy+y²-8x+8√3 y = 0 y' x' 30° x 30° x'² = -4y' (0,0)