As a complex number z = x + yi is an ordered pair (x, y) of real numbers, we can place z in xy-coordinate plane as usual. If the length of the line segment from O to z is r, we say that the absolute value of z is r and is denoted by |z|. Here angle θ, measure in radians, is an angle with positive x-axis and the line segment. From trigonometry, we have known that
r = √ x2 + y2 x = r cos θ y = r sin θ |
z = r(cos θ + i sin θ) |
z1z2 = r1r2(cos(θ1 + θ2) + i sin((θ1 + θ2)) |
cos(θ1 + θ2) + i sin((θ1 + θ2) = (cos θ1 cos θ2 +
sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)
2 √
2
[ (cos π⁄ 3 .
cos 3π⁄ 4 - sin
π⁄ 3 . sin
3π⁄ 4) + i ( sin
π⁄ 3 . cos
3π⁄ 4 + cos
π⁄ 3 . sin
3π⁄ 4) ]
= 2 √
2
[ { 1⁄ 2 .
(- 1⁄
√
2
) - ( √
3
⁄
= 2 √
2 [ ( - 1⁄ 2
√
2 -
√
3 ⁄ 2
√
2 ) + i ( -
√
3 ⁄2
√
2 + 1⁄2
√
2 ) ]
= 2 √
2 [ ( -1 -
√
3 ⁄ 2 √ 2 ) + ( -
√
3 + 1⁄ 2
√
2 ) i ]
= 2 √
2 ( -1 -
√
3 ⁄ 2
√
2 ) +
2 √
2 ( -
√
3 + 1 ⁄ 2
√
2 ) i
= -1 - √
3 + (1 - √
3 )i
checking
z1z2 = (1 + √
3 i)(-1 + i)
= -1 + i - √
3 i + √
3 i2
= -1 - √
3 + (1 - √
3 )i
Multiplicative Inverse in Trigonometric Form
Since z-1 = x ⁄ x2 + y2 -
y ⁄ x2 + y2 i for z = x + yi,
z-1 = 1 ⁄ x2 + y2 (x - yi)
= 1 ⁄ r2 r (cos θ - i sin θ)
= 1 ⁄ r(cos θ - i sin θ)
z-1 = 1 ⁄ r(cos (-θ) + i sin (-θ)) |
z1 ⁄ z2 =r1 ⁄ r2 (cos(θ1 - θ2) + i sin(θ1 - θ2)) |
zn = rn (cos nθ +i sin nθ), n in an integer |
Answer
1. (a) z = 1 - √
3 i
Solution
z = 1 - √
3 i = (1, -
√
3 )
r = √
x2 + y2 =
√
1 + 3 = 2
x = r cos θ
x⁄r = cos θ
1⁄2 = cos θ
cos θ = 1⁄2
r sin θ = y
sin θ = y⁄r = -
√
3 ⁄2
θ = - π⁄3
z = 2 ( cos - π⁄ 3 + i sin
- π⁄3)
(b) z = - √
2 +
√
2 i = ( - √
2 , √
2 )
r = √
x2 + y2 =
√
2 + 2 = 2
cos θ = x⁄ r =
- √
2 ⁄2
sin θ = y⁄r =
√
2 ⁄2
θ = 3π⁄4
z = r (cos θ + i sin θ)
= 2 (cos 3π⁄4 + i sin
3π⁄4)
r = √
x2 + y2 =
√
(-2)2 + (-2)2 =
√
8 =
2 √
2
cos θ = x⁄r = -2⁄2 √
2 =
-1 ⁄
√
2
sin θ = y ⁄ r =
-2 ⁄ 2
√
2 =
-1 ⁄
√
2
θ = -3π ⁄ 4
z = r (cos θ + i sin θ)
= 2 √
2 ( cos -3π ⁄ 4 + i sin -3π ⁄ 4 )
(d) z = √
3 - i =
(√
3 , -1)
r = √
x2 + y2 =
√
4 = 2
cos θ = x ⁄ r =
√
3 ⁄ 2
sin θ = y⁄r =
-1⁄ 2
θ = -π⁄6
z = r ( cos θ + i sin θ)
= 2 (cos -π⁄6 + i sin -π⁄6 )
(e) z = i = (0, 1)
r = √
x2 + y2 =
√
1 = 1
cos θ = x⁄ r =
0⁄ 1 = 0
sin θ = y⁄ r =
1⁄ 1 = 1
θ = π⁄2
z = r ( cos θ + i sin θ )
= 1 (cos π⁄2 + i sin
π⁄2)
cos π⁄2 + i sin
π⁄2
(f) z = -3i = (0, -3)
r = √
x2 + y2 =
√
(-3)2 = 3
cos θ = x⁄r =
0⁄3 = 0
sin θ = y⁄r =
-3⁄3 = -1
θ = -π⁄2
z = ( cos θ + i sin θ )
= 3 ( cos -π⁄2 + i sin
-π⁄2)
2. z1 = 2 - 2 √
3 i, z2 = -1 - i
z1 = 2 - 2 √
3 i = (2, - 2 √
3 )
r1 = √
x2 + y2 =
√
22 + (-2 √3)2 =
= √
4 + 12 = 4
cos θ = x⁄r =
2⁄4 =
1⁄2
sin θ = y⁄r =
-2 √3⁄4 =
-√3⁄2
θ1 = -π⁄3
z1 = r ( cos θ + i sin θ )
= 4 ( cos -π⁄3 + i sin
-π⁄3)
z2 = -1 - i = (-1, -1)
r2 = √
x2 + y2 =
√
(-1)2 + (-1)2 =
√
2
cos θ = x⁄r =
-1⁄
√
2
sin θ = y⁄r =
-1⁄
√
2
θ2 = -3π⁄ 4
z2 = r2 ( cos θ2 + i sin θ2)
= √
2 ( cos -3π⁄4 +
i sin -3π⁄4 )
(a) z1z2 = r1r2 [ cos (θ1 + θ2) + i sin (θ1 + θ2 ) ]
= 4 √
2 [ { cos -π⁄3 +
(-3π⁄4)} + i { sin
-π⁄3 +
(-3π⁄4) } ]
= 4 √
2 [ { cos -π⁄3 -
3π⁄4} + i { sin
-π⁄3 -
3π⁄4 } ]
= 4 √
2 [ { ( cos -π⁄3 . cos -3π⁄ 4 ) - ( sin -π⁄3 . sin -3π⁄4 ) } + i { sin -π⁄3 . cos -3π⁄ 4 ) + ( cos -π⁄3 . sin -3π⁄4 ) } ]
= 4 √
2 [ { (1⁄2 . -1⁄
√
2 ) - (-
√
3 ⁄2 .
-1⁄
√
2 ) } + i { ( -
√
3 ⁄2 . -1 ⁄ √
2 ) + ( 1⁄ 2 . -1⁄
√
2 ) } ]
= 4 √
2 [ ( -1⁄
2 √
2 -
√
3 ⁄ 2
√
2 ) + i (
√
3 ⁄2
√
2 - 1⁄
2 √
2 ) ]
= 4 √
2 [ (-1 -
√
3 ⁄2
√
2 ) + i (
√
3 - 1⁄2
√
2 ) ]
= 4 √
2
(-1 -
√
3 ⁄2
√
2 ) +
4 √
2
(
√
3 - 1⁄2
√
2 ) i
= -2 - 2√
3 + (2√
3 - 2) i
Checking
z1z2 = (2 - 2√
3 i) (-1 - i)
= -2 - 2i + 2√
3 i + 2√
3 i2
= -2 - 2i + 2√
3 i + 2√
3 (-1)
= -2 - 2√
3 + 2√
3 i - 2i
= -2 - 2√
3 + (2√
3 - 2) i
(b) z1-1
z1 = 4 ( cos -π⁄3 + i sin
-π⁄3 )
z1-1 = 1⁄4 ( cos
π⁄3 + i sin
π⁄3 )
= 1⁄4 (
1⁄2 +
√
3 ⁄2 i )
= 1⁄8 +
√
3 ⁄8 i
(c) z2-1
z2 = √
2 (cos -3π⁄4 + i sin -3π⁄4 )
z2-1 = 1⁄
√
2 ( cos 3π⁄4
+ i sin 3π⁄4 )
= 1⁄
√
2 ( -1⁄
√
2 + 1⁄
√
2 i )
= -1⁄
√
2 . √
2 + 1⁄ √
2 . √
2 i
= -1⁄2 +
1⁄2 i
(d) z1⁄z2
z1⁄z2 =
r1⁄r2 [
cos (θ1 - θ2) + i sin (θ1 - θ2) ]
= 4⁄
√
2 [ cos ( -π⁄ 3 - -3π⁄4) + i sin ( -π⁄3 - -3π⁄ 4 ) ]
= 4⁄
√
2 [ cos (-π⁄3 + 3π⁄4 ) + i sin (
-π⁄3 +
3π⁄4 ) ]
= 4⁄
√
2 [ ( cos -π⁄3
. cos 3π⁄4 - sin
-π⁄3 . sin 3π
⁄4 ) + i ( sin -π⁄3 .
cos 3π⁄4 + cos -π
⁄3 . sin 3π⁄4 ) ]
= 4⁄
√
2 [ ( 1⁄2 . -1⁄
√
2 - -
√
3 ⁄2 .
1⁄
√
2 ) + i ( -
√
3 ⁄2 .
-1⁄√
2 +
1⁄2 . 1⁄
√
2 ) ]
= 4⁄
√
2 [ -1⁄2
√
2 +
√
3 ⁄2
√
2 + (
√
3 ⁄2
√
2 + 1⁄2
√
2 ) i ]
= 4⁄
√
2 [ -1 +
√
3 ⁄2
√
2 +
√
3 + 1⁄2
√
2 i ]
= 4⁄
√
2 ( -1 +
√
3 ⁄2
√
2 ) +
4⁄
√
2
(
√
3 + 1⁄2
√
2 ) i
= -1 + √
3 + (
√
3 + 1) i
Checking
z1⁄z2 =
2 - 2√
3 i⁄-1 - i ×
-1 + i⁄-1 + i
=
-2 + 2i + 2√
3 i -
2√
3 i2 ⁄1 - i + i - i2
=
-2 + (2 + 2√
3 ) i -
2√
3 (-1)⁄1 - (-1)
= -2 +
2√
3 + (2√
3 + 2) i⁄2
= 2 [-1 +
√
3 + (√
3 + 1) i ]⁄2
= -1 + √3 + (√3 + 1) i
(e) =
z2⁄z1
z2⁄z1 =
r2⁄r1 [
cos (θ2 - θ1) + i sin (θ2 - θ1) ]
= √
2 ⁄4
[ cos ( -3π⁄ 4 - -π⁄3) + i sin ( -3π⁄4 - -π⁄ 3 ) ]
=
√
2 ⁄4
[ cos (-3π⁄4 + π⁄3 ) + i sin (
-3π⁄4 +
π⁄3 ) ]
=
√
2 ⁄4
[ ( cos -3π⁄4
. cos π⁄3 - sin
-3π⁄4 . sin π
⁄3 ) + i ( sin -3π⁄4 .
cos π⁄3 + cos -3π
⁄4 . sin π⁄3 ) ]
=
√
2 ⁄4
[ ( -1⁄
√
2 .
1⁄2
-
-1⁄
√
2
.
√
3 ⁄2
) + i (
-1⁄√
2 .
1⁄2
+
-1⁄
√
2 .
√
3 ⁄2
) ]
=
√
2 ⁄4
[ -1⁄2
√
2 +
√
3 ⁄2
√
2 + (
-1⁄2
√
2
+
-
√
3 ⁄2
√
2 ) i ]
=
√
2 ⁄4
[ -1 +
√
3 ⁄2
√
2 -
1 +
√
3 ⁄2
√
2 i ]
=
√
2 ⁄4
( -1 +
√
3 ⁄2
√
2 ) -
√
2 ⁄4
( 1 +
√
3 ⁄2
√
2 ) i
=
-1 + √
3 ⁄8 - (
1 +
√
3 ⁄8) i
Checking
z2⁄z1 =
-1 - i⁄2 - 2√
3 i ×
2 + 2√
3
i⁄2 + 2√
3
i
=
-2 - 2√
3 i - 2i -
2√
3 i2 ⁄4 +
4√
3 i -
4√
3 i - 4(3)
i2
=
-2 + ( -2√
3 - 2 ) i -
2√
3 (-1)⁄4 - 12(-1)
= -2 +
2√
3 - (2√
3 + 2) i⁄16
= 2 [-1 +
√
3 - (√
3 + 1) i ]⁄16
=
-1 + √
3 ⁄8
- (
√
3 + 1⁄8 ) i
3. z = -2√
3 - 2i = (-2√
3 , -2)
r = √
x2 + y2 =
√
(-
2√
3 )2 + (-2)2 =
√
16 = 4
cos θ = x⁄r =
- 2√
3 ⁄ 4 = -
√
3 ⁄2
sin θ = y⁄x =
-2⁄4 =
-1⁄2
θ = - 5π⁄6
z = r (cos θ + i sin θ )
= 4 ( cos -5π⁄6 + i sin
-5π⁄6 )
zn = rn ( cos n θ + i sin n θ)
(a) z5 = 45 ( cos 5 . -5π⁄6 +
i sin 5 . -5π⁄6 )
= 1024 ( cos -25π⁄6 +
i
sin -25π⁄6 )
= 1024 [ cos -(24 + 1)π⁄6
+ i
sin -(24 + 1)π⁄6 ]
= 1024 [ cos - (24π⁄6 +
π⁄6) + i sin - (
24π⁄6 +
π⁄6 ) ]
= 1024 [ cos - ( 4π + π⁄6)
+ i
sin - (4π + π⁄6 ) ]
= 1024 [ cos - ( 2π + 2π + π⁄6)
+ i
sin - (2π + 2π + π⁄6 ) ]
= 1024 [ cos -π⁄6
+ i
sin -π⁄6 ]
(Just take π⁄6 and the two full cycles of 2π is ignored)
= 1024 [ √
3 ⁄2 + (-
1⁄2)i ]
= 512 √
3 - 512 i
(b)
z-5 = 1⁄45 [
cos 5(-5 π⁄6) +
i sin 5 (-5π⁄6 ) ]
=
1⁄1024
[ cos -25π⁄6 + i
sin -25π⁄6 ) ]
=
1⁄1024
[ cos -(24 + 1)π⁄6
+ i
sin -(24 + 1)π⁄6 ]
=
1⁄1024
[ cos - (24π⁄6 +
π⁄6) + i sin - (
24π⁄6 +
π⁄6 ) ]
=
1⁄1024
[ cos - ( 4π + π⁄6)
+ i
sin - (4π + π⁄6 ) ]
=
1⁄1024
[
cos - ( 2π + 2π + π⁄6)
+ i
sin - (2π + 2π + π⁄6 ) ]
=
1⁄1024
[
cos -π⁄6
+ i
sin -π⁄6 ]
(Just take π⁄6 and the two full cycles of 2π is ignored)
=
1⁄1024
[ √
3 ⁄2 + (-
1⁄2)i ]
=
√
3 ⁄2048 -
1⁄2048i
«
Previous
Next »