if n = 1, | 1 = 12, | ||
if n = 2, | 1 + 3 | = 4 | = 22 , |
if n = 3, | 1 + 3 + 5 | = 9 | = 32 , |
if n = 4, | 1 + 3 + 5 + 7 | = 16 | = 42, |
if n = 5, | 1 + 3 + 5 + 7 + 9 | = 25 | = 52 , |
if n = 6, | 1 + 3 + 5 + 7 + 9 + 11 | = 36 | = 62 , |
1 + 3 + 5 + ... + (2k - 1) + [ 2(k + 1) - 1] | = k2 + [2(k + 1) - 1] |
= k2 + 2k + 2 - 1 | |
= k2 + 2k + 1 | |
= (k + 1)2 |
1 + 2 + 3 + ... + k + (k + 1) | = k(k + 1) ⁄ 2 + (k + 1) |
= k2 + k + 2k + 2 ⁄2 | |
= k2 + 3k + 2 ⁄ 2 | |
= (k + 1)(k + 2) ⁄ 2 |
(1) For n = 1, | L.H.S = 1 ⋅ 3 = 3, |
R.H.S = (2 - 1)32 + 3 ⁄ 4 = 12 ⁄ 4 = 3. | |
L.H.S = R.H.S |
1⋅3 + 2⋅32 + 3⋅33 +...+ k⋅3k + (k + 1)⋅3k+1 | = (2k - 1)3k+1 + 3 ⁄ 4 + (k + 1)3k+1 |
= (2k - 1)3k+1 + 3 + 4(k + 1)3k+1 ⁄ 4 | |
= (6k + 3)3k+1 + 3 ⁄ 4 | |
= (2k + 1)3k+2 + 3 ⁄ 4 | |
= (2(k + 1) - 1)3k+2 + 3 ⁄ 4 |
ak+1 - bk+1 | = ak+1 - akb + akb - bk+1 |
= ak(a - b) + b(ak - bk). |
(1) For n = 5, | L.H.S | = 4(5) = 20 |
R.H.S | = 25 = 32 | |
L.H.S | < R.H.S |
4(k + 1) | = 4k + 4 |
< 2k + 4 | |
< 2k + 4k (since 4 < 4k) | |
< 2k + 2k | |
= 2 . 2k = 2k+1 |