1.3 Operations on Complex Numbers

Sum and product of complex numbers were defined in Section 1.2. Subtraction of complex numbers is defined as in real numbers as follows:

(x1+ y1i) - (x2 + y2i) = (x1 + y1i) + (-x2 - y2 i)


Therefore sum, product and subtraction of complex numbers can be performed as in the real numbers, except only that i2 = -1. But the division of complex numbers is a little different from the division of real numbers. We need some notations to define the division.
From now on let us denote a complex number by z, so that

z = (x + y i) = (x, y)

$$ \text{the \textbf{conjugate}}\ \bar{z} \ \text{of a complex number} $$ $$ z = x + yi = (x, y) \text{is defined by} $$ $$ \bar{z} = x - yi = (x, -y) $$ Then we have $$ z\bar{z} = (x + yi)(x - yi) = x^2 + y^2 $$ Let z1 = x1 + y1i and z2 + y2i.
We will calculate z1z2, (z2 ≠ 0), as follows:
$$ \frac{z_1}{z_2} = \frac{z_1}{z_2} \frac{\bar{z}_2}{\bar{z}_2} $$ $$ = \frac{x_1 + y_1i}{x_2 + y_2i} \frac{x_2 - y_2i}{x_2 - y_2i} $$ $$ = \frac{x_1x_2 + y_1y_2 (y_1x_2 - x_1y_2)i}{x_2 ^2 + y_2^2 } $$ $$ = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + \frac{y_1x_2 - x_1y_2}{x_2^2 + y_2^2}i $$ Example 4.
Calculate 2 + 3i 3 + i

Solution
2 + 3i 3 + i = 2 + 3i 3 + i 3 - i 3 - i
= 6 + 3 + (9 - 2)i 9 + 1
= 9 + 7i10
= 9 10 + 7 10 i
Now we calculate 1 z for z = x + yi, z ≠ 0,
1 z = 1 x + yi x - yi x - yi
= x - yi x2 + y2
= x x2 + y2 - y x2 + y2i

And we can check that
z (1 z) = (x + yi) (x x2 + y2 - y x2 + y2 i)
= x2 + y2 x2 + y2 + yx - xy x2 + y2 i
= 1

So, for a non-zero complex number z, 1 z is the multiplicative inverse of z and is denoted by z-1. From these facts, division of complex numbers is defined as
z1z2 = z1z2-1
but we usually calculate z1 z2 as in Example 4.

Exercise 1.3
1. Let z1 = -2 + 3i, z2 = 5 + 2i. Compute:

(a) z12 - 2z1 + 1
(b) 3z22 + 2z2 - 1
$$ \text{(c)}\ z_1\bar{z}_2 + z_2\bar{z}_1 $$ (d) 1z1
(e) 1z2
(f) 1z1z2
(g) z1z2
$$ \text{(h)}\ \frac{\bar{z}_1}{\bar{z}_2} $$ (i) z2z1
$$ \text{(j)} \ \overline{ \left ( \frac{z_2}{z_1} \right )} $$ $$\text{(k)} \ \frac{\bar{z}_1z_2}{z_1\bar{z}_2} $$ $$ \text{(l)} \ \frac{z_2}{\bar{z}_1} + \frac{z_1}{\bar{z}_2} $$
ပံ့ပိုးကူညီသူများ



Answers
1. z1 = -2 +3i, z2 = 5 + 2i

(a) z12 - 2z1 + 1
= (-2 + 3i)2 - 2 (-2 + 3i) + 1
= 4 - 12i + 9i2 + 4 - 6i + 1
= 9 - 18i + 9(-1)
= 9 - 18i - 9
= -18i

(b) 3z22 + 2z2 - 1
= 3 (5 + 2i)2 + 2 (5 + 2i) - 1
= 3 (25 + 20i + 4i2) + 10 + 4i - 1
= 75 + 60i + 12i2 + 10 + 4i - 1
= 84 + 64i + 12(-1)
= 84 + 64i - 12
= 72 + 64i

(c) z1 z2 + z2 z1   = (-2 + 3i) (5 - 2i) + (5 + 2i) (-2 - 3i)
= (-10 + 4i + 15i - 6i2) + (-10 - 15i - 4i - 6i2)
= (-10 + 19i - 6(-1) ) + (-10 - 19i - 6(-1) )
= (-4 + 19i) + (-4 - 19i)
= -8 + 0i
= -8

(d) 1 z1
= 1 -2 + 3i × -2 - 3i -2 - 3i
= -2 - 3i 4 - 9i2
= -2 - 3i 4 - 9(-1)
= -2 - 3i 4 + 9
= -2 - 3i 13
= -2 13 - 3 13 i

(e) 1 z2 = 1 5 + 2i × 5 - 2i 5 - 2i
= 5 - 2i 25 - 10i + 10i - 4i2
= 5 - 2i 25 - 4i2
= 5 - 2i 25 - 4(-1)
= 5 - 2i 25 + 4
= 5 - 2i 29
= 5 29 - 2 29 i

(f) 1 z1z2 = 1 (-2 + 3i) (5 + 2i)

= 1 -10 - 4i + 15i + 6i2
= 1 -10 + 11i + 6(-1)
= 1-16 + 11i
= 1 -16 + 11i × -16 - 11i -16 - 11i
= -16 - 11i256 + 176i - 176i - 121i2
= -16 - 11i 256 - 121(-1)
= -16 - 11i 256 + 121
= -16 - 11i 377
= -16 377 - 11 377 i

(g) z1 z2 = -2 + 3i 5 + 2i × 5 - 2i5 - 2i
= -10 + 4i + 15i - 6i2 25 - 10i + 10i - 4i2
= -10 + 19i - 6(-1)25 - 4(-1)
= -10 + 19i + 625 + 4
= -4 + 19i 29
= -4 29 + 19 29 i

(h) z1 z2 = -2 - 3i 5 - 2i × 5 + 2i5 + 2i
= -10 - 4i - 15i - 6i2 25 + 10i - 10i - 4i2
= -10 - 19i - 6(-1)25 - 4(-1)
= -10 - 19i + 625 + 4
= - 4 - 19i 29
= - 4 29 - 19 29 i

(i) z2 z1 = 5 + 2i -2 + 3i × -2 - 3i-2 - 3i
= -10 - 15i - 4i - 6i24 + 6i - 6i - 9i2
= -10 - 19i - 6(-1) 4 - 9(-1)
= -10 - 19i + 64 + 9
= - 4 - 19i 13
= - 4 13 - 19 13 i

$$\text{(j)}\ \ \overline{(\frac{z_2}{z_1})} = \overline{\left(\frac{5+2i}{-2+3i} \times \frac{-2-3i}{-2-3i}\right)} $$ $$ = \overline{\left(\frac{-10 - 15i - 4i - 6i^2}{4 + 6i -6i - 9i^2}\right)} $$ $$ = \overline{\left(\frac{-10 - 19i - 6(-1)}{4 - 9(-1)}\right)} $$ $$ = \overline{\left(\frac{-4 - 19i}{13}\right)} $$ $$ = \frac{-4-19i}{13} $$ $$ = \frac{-4}{13} - \frac{19}{13}i $$
(k) z1 z2 z1 z2
= (-2 - 3i) (5 + 2i) (-2 + 3i) (5 - 2i)
= -10 - 4i - 15i - 6i2 -10 + 4i + 15i - 6i2
= -10 - 19i - 6(-1)-10 + 19i - 6(-1)
= -10 - 19i + 6-10 + 19i + 6
= -4 - 19i -4 + 19i
= -4 - 19i -4 + 19i × -4 - 19i -4 - 19i
= 16 + 76i + 76i + 361i2 16 + 76i - 76i - 361i2
= 16 + 152i + 361(-1) 16 - 361(-1)
= 16 + 152i - 361 16 + 361
= -345 + 152i 377
= -345 377 + 152 377 i

(l) z2 z1 + z1 z2 = z2 z2 + z1 z1 z1     z2
= (5 + 2i) (5 - 2i) + (-2 + 3i (-2 - 3i) (-2 - 3i) (5 - 2i)
= (25 - 10i + 10i - 4i2) + (4 + 6i - 6i - 9i2)-10 + 4i - 15i + 6i2
= (25 - 4(-1) ) + (4 - 9(-1) )-10 - 11i + 6(-1)
= 25 + 4 + 4 + 9 -10 - 11i - 6
= 42-16 - 11i
= 42 -16 - 11i × -16 + 11i -16 + 11i
= -672 + 642i 256 + 121
= -672 + 462i 377
= -672 377 + 462 377 i

2. z1 = 3 - 2i,     z2 = -1 + 4i
(a) (z1 + z2) = z1 + z2
(z1 + z2) = ( (3 - 2i) + (-1 + 4i) )
= (2 + 2i)
= (2 - 2i)

z1 + z2 = (3 - 2i) + (-1 + 4i) = (3 + 2i) + (-1 - 4i)

(z1 + z2) = z1 + z2

(b) z1 z2   =   z1   z2

z1 z2   =   (3 - 2i) (-1 + 4i)
= (-3 + 12i + 2i - 8i2)
= (-3 + 14z - 8(-1) )
(-3 + 14i + 8)
= (5 + 14z)
= (5 - 14i)

z1   z2   =   (3 - 2i)   (-1 + 4i)
= (3 + 2i) (-1 - 4i)
= (-3 -12i - 2i - 8i2
= -3 - 14i - 8(-1)
= -3 - 14i + 8
= 5 - 14i
z1 z2   =   z1   z2

(c)
$$ \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}} $$ $$ \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\left(\frac{3 - 2i}{-1 + 4i}\right) \times \left(\frac{-1 - 4i}{-1 - 4i}\right)} $$ $$ = \overline{\left(\frac{-3 - 12i + 2i + 8i^2}{1 + 4i - 4i - 16i^2}\right)} $$ $$ = \overline{\left(\frac{-3 - 10i + 8(-1)}{1 - 16(-1)}\right)} $$ $$ = \overline{\left(\frac{-11 - 10i}{17}\right)} $$ $$ = \frac{-11 + 10i}{17} $$
$$ \frac{\overline{z_1}}{\overline{z_2}} = \frac{\overline{(3 - 2i)}}{\overline{(-1 + 4i)}} $$ $$ = \frac{(3 + 2i)}{(-1 - 4i)} $$ $$ = \frac{3 + 2i}{-1 - 4i} \times \frac{-1 + 4i}{-1 + 4i} $$ $$ = \frac{-3 + 12i - 2i + 8i^2}{1 - 4i + 4i - 16i^2} $$ $$ = \frac{-3 + 10i + 8(-1)}{1 - 16(-1)} $$ $$ = \frac{-11 + 10i}{17} $$ $$ \therefore \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}} $$