1.3 Operations on Complex Numbers
Sum and product of complex numbers were defined in Section 1.2. Subtraction of complex numbers is defined as in real numbers as follows:
(x1+ y1i) - (x2 + y2i) = (x1 + y1i) + (-x2 - y2 i) |
Therefore sum, product and subtraction of complex numbers can be performed as in the real numbers, except only that i2 = -1. But the division of complex numbers is a little different from the division of real numbers. We need some notations to define the division.
From now on let us denote a complex number by z, so that
$$ \text{the \textbf{conjugate}}\ \bar{z} \ \text{of a complex number} $$
$$ z = x + yi = (x, y) \text{is defined by} $$
$$ \bar{z} = x - yi = (x, -y) $$
Then we have
$$ z\bar{z} = (x + yi)(x - yi) = x^2 + y^2 $$
Let z1 = x1 + y1i and z2 + y2i.
We will calculate z1⁄z2, (z2 ≠ 0), as follows:
$$ \frac{z_1}{z_2} = \frac{z_1}{z_2} \frac{\bar{z}_2}{\bar{z}_2} $$
$$ = \frac{x_1 + y_1i}{x_2 + y_2i} \frac{x_2 - y_2i}{x_2 - y_2i} $$
$$ = \frac{x_1x_2 + y_1y_2 (y_1x_2 - x_1y_2)i}{x_2 ^2 + y_2^2 } $$
$$ = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + \frac{y_1x_2 - x_1y_2}{x_2^2 + y_2^2}i $$
Example 4.
Calculate 2 + 3i ⁄3 + i
Solution
2 + 3i ⁄3 + i = 2 + 3i ⁄3 + i 3 - i ⁄3 - i
= 6 + 3 + (9 - 2)i ⁄9 + 1
= 9 + 7i⁄10
= 9 ⁄10 + 7 ⁄10 i
Now we calculate 1 ⁄z for z = x + yi, z ≠ 0,
1 ⁄z = 1 ⁄x + yi x - yi ⁄x - yi
= x - yi ⁄x2 + y2
= x ⁄x2 + y2 - y ⁄x2 + y2i
And we can check that
z (1 ⁄z) = (x + yi) (x ⁄x2 + y2 - y ⁄x2 + y2 i)
= x2 + y2 ⁄x2 + y2 + yx - xy ⁄x2 + y2 i
= 1
So, for a non-zero complex number z, 1 ⁄z is the multiplicative inverse of z and is denoted by z-1. From these facts, division of complex numbers is defined as
z1⁄z2 = z1z2-1
but we usually calculate z1 ⁄z2 as in Example 4.
Exercise 1.3
1. Let z1 = -2 + 3i, z2 = 5 + 2i. Compute:
(a) z12 - 2z1 + 1
(b) 3z22 + 2z2 - 1
$$ \text{(c)}\ z_1\bar{z}_2 + z_2\bar{z}_1 $$
(d) 1⁄z1
(e) 1⁄z2
(f) 1⁄z1z2
(g) z1⁄z2
$$ \text{(h)}\ \frac{\bar{z}_1}{\bar{z}_2} $$
(i) z2⁄z1
$$ \text{(j)} \ \overline{ \left ( \frac{z_2}{z_1} \right )} $$
$$\text{(k)} \ \frac{\bar{z}_1z_2}{z_1\bar{z}_2} $$
$$ \text{(l)} \ \frac{z_2}{\bar{z}_1} + \frac{z_1}{\bar{z}_2} $$
ပံ့ပိုးကူညီသူများ
Answers
1. z1 = -2 +3i, z2 = 5 + 2i
(a) z12 - 2z1 + 1
= (-2 + 3i)2 - 2 (-2 + 3i) + 1
= 4 - 12i + 9i2 + 4 - 6i + 1
= 9 - 18i + 9(-1)
= 9 - 18i - 9
= -18i
(b) 3z22 + 2z2 - 1
= 3 (5 + 2i)2 + 2 (5 + 2i) - 1
= 3 (25 + 20i + 4i2) + 10 + 4i - 1
= 75 + 60i + 12i2 + 10 + 4i - 1
= 84 + 64i + 12(-1)
= 84 + 64i - 12
= 72 + 64i
(c) z1 z2 + z2 z1 = (-2 + 3i) (5 - 2i) + (5 + 2i) (-2 - 3i)
= (-10 + 4i + 15i - 6i2) + (-10 - 15i - 4i - 6i2)
= (-10 + 19i - 6(-1) ) + (-10 - 19i - 6(-1) )
= (-4 + 19i) + (-4 - 19i)
= -8 + 0i
= -8
(d) 1⁄ z1
= 1⁄ -2 + 3i × -2 - 3i⁄ -2 - 3i
= -2 - 3i⁄ 4 - 9i2
= -2 - 3i ⁄ 4 - 9(-1)
= -2 - 3i ⁄ 4 + 9
= -2 - 3i⁄ 13
= -2⁄ 13 - 3⁄ 13 i
(e) 1⁄ z2 = 1⁄ 5 + 2i × 5 - 2i⁄ 5 - 2i
= 5 - 2i ⁄ 25 - 10i + 10i - 4i2
= 5 - 2i ⁄ 25 - 4i2
= 5 - 2i ⁄ 25 - 4(-1)
= 5 - 2i⁄ 25 + 4
= 5 - 2i⁄ 29
= 5⁄ 29 - 2⁄ 29 i
(f) 1⁄ z1z2 = 1⁄ (-2 + 3i) (5 + 2i)
= 1⁄ -10 - 4i + 15i + 6i2
= 1⁄ -10 + 11i + 6(-1)
= 1⁄-16 + 11i
= 1⁄ -16 + 11i × -16 - 11i⁄ -16 - 11i
= -16 - 11i⁄256 + 176i - 176i - 121i2
= -16 - 11i⁄ 256 - 121(-1)
= -16 - 11i⁄ 256 + 121
= -16 - 11i⁄ 377
= -16⁄ 377 - 11⁄ 377 i
(g) z1⁄ z2 = -2 + 3i⁄ 5 + 2i × 5 - 2i⁄5 - 2i
= -10 + 4i + 15i - 6i2⁄ 25 - 10i + 10i - 4i2
= -10 + 19i - 6(-1)⁄25 - 4(-1)
= -10 + 19i + 6⁄25 + 4
= -4 + 19i⁄ 29
= -4⁄ 29 + 19⁄ 29 i
(h) z1 ⁄ z2 = -2 - 3i⁄ 5 - 2i × 5 + 2i⁄5 + 2i
= -10 - 4i - 15i - 6i2⁄ 25 + 10i - 10i - 4i2
= -10 - 19i - 6(-1)⁄25 - 4(-1)
= -10 - 19i + 6⁄25 + 4
= - 4 - 19i⁄ 29
= - 4⁄ 29 - 19⁄ 29 i
(i) z2⁄ z1 = 5 + 2i⁄ -2 + 3i × -2 - 3i⁄-2 - 3i
= -10 - 15i - 4i - 6i2⁄4 + 6i - 6i - 9i2
= -10 - 19i - 6(-1)⁄ 4 - 9(-1)
= -10 - 19i + 6⁄4 + 9
= - 4 - 19i⁄ 13
= - 4⁄ 13 - 19⁄ 13 i
$$\text{(j)}\ \ \overline{(\frac{z_2}{z_1})} = \overline{\left(\frac{5+2i}{-2+3i} \times \frac{-2-3i}{-2-3i}\right)} $$
$$ = \overline{\left(\frac{-10 - 15i - 4i - 6i^2}{4 + 6i -6i - 9i^2}\right)} $$
$$ = \overline{\left(\frac{-10 - 19i - 6(-1)}{4 - 9(-1)}\right)} $$
$$ = \overline{\left(\frac{-4 - 19i}{13}\right)} $$
$$ = \frac{-4-19i}{13} $$
$$ = \frac{-4}{13} - \frac{19}{13}i $$
(k) z1 z2⁄ z1 z2
= (-2 - 3i) (5 + 2i)⁄ (-2 + 3i) (5 - 2i)
= -10 - 4i - 15i - 6i2⁄ -10 + 4i + 15i - 6i2
= -10 - 19i - 6(-1)⁄-10 + 19i - 6(-1)
= -10 - 19i + 6⁄-10 + 19i + 6
= -4 - 19i⁄ -4 + 19i
= -4 - 19i⁄ -4 + 19i × -4 - 19i⁄ -4 - 19i
= 16 + 76i + 76i + 361i2⁄ 16 + 76i - 76i - 361i2
= 16 + 152i + 361(-1)⁄ 16 - 361(-1)
= 16 + 152i - 361⁄ 16 + 361
= -345 + 152i⁄ 377
= -345⁄ 377 + 152⁄ 377 i
(l) z2⁄ z1 + z1⁄ z2 = z2 z2 + z1 z1 ⁄ z1 z2
= (5 + 2i) (5 - 2i) + (-2 + 3i (-2 - 3i)⁄ (-2 - 3i) (5 - 2i)
= (25 - 10i + 10i - 4i2) + (4 + 6i - 6i - 9i2)⁄-10 + 4i - 15i + 6i2
= (25 - 4(-1) ) + (4 - 9(-1) )⁄-10 - 11i + 6(-1)
= 25 + 4 + 4 + 9⁄ -10 - 11i - 6
= 42⁄-16 - 11i
= 42⁄ -16 - 11i × -16 + 11i⁄ -16 + 11i
= -672 + 642i⁄ 256 + 121
= -672 + 462i⁄ 377
= -672⁄ 377 + 462⁄ 377 i
2. z1 = 3 - 2i, z2 = -1 + 4i
(a) (z1 + z2) = z1 + z2
(z1 + z2) = ( (3 - 2i) + (-1 + 4i) )
= (2 + 2i)
= (2 - 2i)
z1 + z2 = (3 - 2i) + (-1 + 4i) = (3 + 2i) + (-1 - 4i)
∴ (z1 + z2) = z1 + z2
(b) z1 z2 = z1 z2
z1 z2 = (3 - 2i) (-1 + 4i)
= (-3 + 12i + 2i - 8i2)
= (-3 + 14z - 8(-1) )
(-3 + 14i + 8)
= (5 + 14z)
= (5 - 14i)
z1 z2 = (3 - 2i) (-1 + 4i)
= (3 + 2i) (-1 - 4i)
= (-3 -12i - 2i - 8i2
= -3 - 14i - 8(-1)
= -3 - 14i + 8
= 5 - 14i
∴ z1 z2 = z1 z2
(c)
$$ \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}} $$
$$ \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\left(\frac{3 - 2i}{-1 + 4i}\right) \times \left(\frac{-1 - 4i}{-1 - 4i}\right)} $$
$$ = \overline{\left(\frac{-3 - 12i + 2i + 8i^2}{1 + 4i - 4i - 16i^2}\right)} $$
$$ = \overline{\left(\frac{-3 - 10i + 8(-1)}{1 - 16(-1)}\right)} $$
$$ = \overline{\left(\frac{-11 - 10i}{17}\right)} $$
$$ = \frac{-11 + 10i}{17} $$
$$ \frac{\overline{z_1}}{\overline{z_2}} = \frac{\overline{(3 - 2i)}}{\overline{(-1 + 4i)}} $$
$$ = \frac{(3 + 2i)}{(-1 - 4i)} $$
$$ = \frac{3 + 2i}{-1 - 4i} \times \frac{-1 + 4i}{-1 + 4i} $$
$$ = \frac{-3 + 12i - 2i + 8i^2}{1 - 4i + 4i - 16i^2} $$
$$ = \frac{-3 + 10i + 8(-1)}{1 - 16(-1)} $$
$$ = \frac{-11 + 10i}{17} $$
$$ \therefore \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}} $$
« Previous
Next »