As a complex number z = x + yi is an ordered pair (x, y) of real numbers, we can place z in xy-coordinate plane as usual. If the length of the line segment from O to z is r, we say that the absolute value of z is r and is denoted by |z|. Here angle θ, measure in radians, is an angle with positive x-axis and the line segment. From trigonometry, we have known that
r = √x2 + y2x = r cos θ y = r sin θ
So we have z = (x, y) = x + yi = r cos θ + i r sin θ.
z = r(cos θ + i sin θ)
Which is called the trigonometric form of a complex number. z = (r, θ) is called the polar form of z.
Example 5.
Find the trigonometric form with -π < θ ≤ π.
(a) z = 1 + √
3 i
(b) z = -1 + i
(c) z = - √
3 - i
(d) z = -1
Solution
(a) z = 1 + √
3 i = (1, √
3 ) r = √
1 + 3 = 2, cos θ =
1⁄2
sin θ =
√
3 ⁄2 θ = π⁄3 z = 2(cos π⁄3 + i sin
π⁄3)
(b) z = -1 + i = (-1, 1) r = √
1 + 1 =
√
2 , cos θ = -
1⁄
√
2
sin θ =
1⁄
√
2 θ =
3π⁄4 z =
√
2
(cos
3π⁄4
+ i sin
3π⁄4
)
(c) z = -√
3 - i =
( -√
3 - 1) r = √
3 + 1 = 2,
cos θ = -
√
3 ⁄2,
sin θ = -
1⁄2 θ = - 5π⁄6 z = 2(cos (- 5π⁄6) +
i sin(-
5π⁄6))
(d) z = -1 = (-1, 0) r = 1, cos θ = -1, sin θ = 0 θ = π z = cos π + i sin π
ပံ့ပိုးကူညီသူ
Product in Trigonometric Form
Let z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2). Then their product is
z1z2 =
r1(cos θ1 + i sin θ1) . r2(cos θ2 + i sin θ2)
= r1r2((cos θ1 cos θ2 -
sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2))
= r1r2(cos(θ1 + θ2) + i sin((θ1 + θ2))
z1z2 = r1r2(cos(θ1 + θ2) + i sin((θ1 + θ2))
Example 6.
Given that z1 = 1 + √
3 i,
z2 = -1 + i, find z1z2 by using trigonometric forms. Check your answer by direct multiplication.
Solution
z1 = 1 + √
3 i =
2(cos π⁄3 + i sin
π⁄3)
(See Example 5(a)) z2 = -1 + i =
√
2 (cos 3π⁄4 + i sin
3π⁄4)
(See Example 5(b)) z1z2 = 2√
2 [ cos (π⁄3 +
3π⁄4) + i sin (π⁄3 + 3π⁄4)]
= -1 - √
3 + (1 - √
3 )i
cos(θ1 + θ2) + i sin((θ1 + θ2) = (cos θ1 cos θ2 +
sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)
(a) z = 1 - √
3 i
(b) z = - √
2 +
√
2 i
(c) z = -2 - 2i
(d) z = √
3 - i
(e) z = i
(f) z = -3i
Given that z1 = 2 - 2√
3 i, z2 = -1 - i, find the following complex numbers by using trigonometric forms. Check your answer by direct calculation.
(a) z1z2
(b) z1-1
(c) z2-1
(d) z1⁄z2
(e) z2⁄z1
Given that z = -2
√
3 - 2i, find (a) z5 (b) z-5
Answer
1. (a) z = 1 - √ 3 i Solution z = 1 - √
3 i = (1, -
√
3 )
r = √x2 + y2 =
√ 1 + 3 = 2 x = r cos θ x⁄r = cos θ 1⁄2 = cos θ
cos θ = 1⁄2 r sin θ = y
sin θ = y⁄r = -
√ 3 ⁄2
θ = - π⁄3 z = 2 ( cos - π⁄3 + i sin
- π⁄3)
(b) z = - √ 2 +
√ 2 i = ( - √ 2 , √ 2 )
r = √x2 + y2 =
√ 2 + 2 = 2
cos θ = x⁄r =
- √ 2 ⁄2
sin θ = y⁄r =
√ 2 ⁄2
θ = 3π⁄4 z = r (cos θ + i sin θ)
= 2 (cos 3π⁄4 + i sin
3π⁄4)
(c) z = -2 - 2i = (-2, -2)
r = √x2 + y2 =
√ (-2)2 + (-2)2 =
√ 8 =
2 √ 2
cos θ = x⁄r = -2⁄2 √ 2 =
-1⁄
√ 2
sin θ = y⁄r =
-2⁄2
√ 2 =
-1⁄
√ 2
θ = -3π⁄4 z = r (cos θ + i sin θ)
= 2 √ 2 ( cos -3π⁄4 + i sin -3π⁄4 )
(d) z = √ 3 - i =
(√ 3 , -1)
r = √x2 + y2 =
√ 4 = 2
cos θ = x⁄r =
√ 3 ⁄2
sin θ = y⁄r =
-1⁄2
θ = -π⁄6 z = r ( cos θ + i sin θ)
= 2 (cos -π⁄6 + i sin -π⁄6 )
(e) z = i = (0, 1)
r = √x2 + y2 =
√ 1 = 1
cos θ = x⁄r =
0⁄1 = 0
sin θ = y⁄r =
1⁄1 = 1
θ = π⁄2 z = r ( cos θ + i sin θ )
= 1 (cos π⁄2 + i sin
π⁄2)
cos π⁄2 + i sin
π⁄2
(f) z = -3i = (0, -3)
r = √x2 + y2 =
√ (-3)2 = 3
cos θ = x⁄r =
0⁄3 = 0
sin θ = y⁄r =
-3⁄3 = -1
θ = -π⁄2 z = ( cos θ + i sin θ )
= 3 ( cos -π⁄2 + i sin
-π⁄2)
2. z1 = 2 - 2 √ 3 i, z2 = -1 - i
z1 = 2 - 2 √ 3 i = (2, - 2 √ 3 )
r1 = √x2 + y2 =
√ 22 + (-2 √3)2 =
= √ 4 + 12 = 4
cos θ = x⁄r =
2⁄4 =
1⁄2
sin θ = y⁄r =
-2 √3⁄4 =
-√3⁄2
θ1 = -π⁄3 z1 = r ( cos θ + i sin θ )
= 4 ( cos -π⁄3 + i sin
-π⁄3)
(e) =
z2⁄z1 z2⁄z1 =
r2⁄r1 [
cos (θ2 - θ1) + i sin (θ2 - θ1) ]
= √ 2 ⁄4
[ cos ( -3π⁄4 - -π⁄3) + i sin ( -3π⁄4 - -π⁄3 ) ]
=
√ 2 ⁄4
[ cos (-3π⁄4 + π⁄3 ) + i sin (
-3π⁄4 +
π⁄3 ) ]
=
√ 2 ⁄4
[ ( cos -3π⁄4
. cos π⁄3 - sin
-3π⁄4 . sin π
⁄3 ) + i ( sin -3π⁄4 .
cos π⁄3 + cos -3π
⁄4 . sin π⁄3 ) ]
=
√ 2 ⁄4
[ ( -1⁄
√ 2 .
1⁄2
-
-1⁄
√ 2 .
√ 3 ⁄2
) + i (
-1⁄√ 2 .
1⁄2
+
-1⁄√ 2 .
√ 3 ⁄2
) ]
=
√ 2 ⁄4
[ -1⁄2
√ 2 +
√ 3 ⁄2
√ 2 + (
-1⁄2
√ 2 +
-
√ 3 ⁄2
√ 2 ) i ]
=
√ 2 ⁄4
[ -1 +
√ 3 ⁄2
√ 2 -
1 +
√ 3 ⁄2
√ 2 i ]
=
√ 2 ⁄4
( -1 +
√ 3 ⁄2
√ 2 ) -
√ 2 ⁄4
( 1 +
√ 3 ⁄2
√ 2 ) i
=
-1 + √ 3 ⁄8 - (
1 +
√ 3 ⁄8) i
Checking z2⁄z1 =
-1 - i⁄2 - 2√ 3 i ×
2 + 2√ 3 i⁄2 + 2√ 3 i
=
-2 - 2√ 3 i - 2i -
2√ 3 i2⁄4 +
4√ 3 i -
4√ 3 i - 4(3)
i2
=
-2 + ( -2√ 3 - 2 ) i -
2√ 3 (-1)⁄4 - 12(-1)
= -2 +
2√ 3 - (2√ 3 + 2) i⁄16
= 2 [-1 +
√ 3 - (√ 3 + 1) i ]⁄16
=
-1 + √ 3 ⁄8
- (
√ 3 + 1⁄8 ) i
3. z = -2√ 3 - 2i = (-2√ 3 , -2)
r = √x2 + y2 =
√ (-
2√ 3 )2 + (-2)2 =
√ 16 = 4
cos θ = x⁄r = - 2√ 3 ⁄4 = -
√ 3 ⁄2
sin θ = y⁄x =
-2⁄4 =
-1⁄2
θ = - 5π⁄6 z = r (cos θ + i sin θ )
= 4 ( cos -5π⁄6 + i sin
-5π⁄6 ) zn = rn ( cos n θ + i sin n θ)
(a) z5 = 45 ( cos 5 . -5π⁄6 +
i sin 5 . -5π⁄6 )
= 1024 ( cos -25π⁄6 +
i
sin -25π⁄6 )
= 1024 [ cos -(24 + 1)π⁄6
+ i
sin -(24 + 1)π⁄6 ]
= 1024 [ cos - (24π⁄6 +
π⁄6) + i sin - (
24π⁄6 +
π⁄6 ) ]
= 1024 [ cos - ( 4π + π⁄6)
+ i
sin - (4π + π⁄6 ) ]
= 1024 [ cos - ( 2π + 2π + π⁄6)
+ i
sin - (2π + 2π + π⁄6 ) ]
= 1024 [ cos -π⁄6
+ i
sin -π⁄6 ]
(Just take π⁄6 and the two full cycles of 2π is ignored)
= 1024 [ √ 3 ⁄2 + (-
1⁄2)i ]
= 512 √ 3 - 512 i
(b)
z-5 = 1⁄45 [
cos 5(-5 π⁄6) +
i sin 5 (-5π⁄6 ) ]
=
1⁄1024
[ cos -25π⁄6 + i
sin -25π⁄6 ) ]
=
1⁄1024
[ cos -(24 + 1)π⁄6
+ i
sin -(24 + 1)π⁄6 ]
=
1⁄1024
[ cos - (24π⁄6 +
π⁄6) + i sin - (
24π⁄6 +
π⁄6 ) ]
=
1⁄1024
[ cos - ( 4π + π⁄6)
+ i
sin - (4π + π⁄6 ) ]
=
1⁄1024
[
cos - ( 2π + 2π + π⁄6)
+ i
sin - (2π + 2π + π⁄6 ) ]
=
1⁄1024
[
cos -π⁄6
+ i
sin -π⁄6 ]
(Just take π⁄6 and the two full cycles of 2π is ignored)
=
1⁄1024
[ √ 3 ⁄2 + (-
1⁄2)i ]
=
√ 3 ⁄2048 -
1⁄2048i