1.4 Trigonometric Form

As a complex number z = x + yi is an ordered pair (x, y) of real numbers, we can place z in xy-coordinate plane as usual. If the length of the line segment from O to z is r, we say that the absolute value of z is r and is denoted by |z|. Here angle θ, measure in radians, is an angle with positive x-axis and the line segment. From trigonometry, we have known that

x y θ r z = (x, y) = x + yi O

r = √ x2 + y2       x = r cos θ       y = r sin θ


So we have z = (x, y) = x + yi = r cos θ + i r sin θ.
z = r(cos θ + i sin θ)

Which is called the trigonometric form of a complex number. z = (r, θ) is called the polar form of z.

Example 5.
Find the trigonometric form with -π < θ ≤ π.
(a) z = 1 + √ 3 i
(b) z = -1 + i
(c) z = - √ 3 - i
(d) z = -1

Solution

(a) z = 1 + √ 3 i = (1, √ 3 )
r = √ 1 + 3 = 2,       cos θ = 12       sin θ = 3 2
θ = π3
z = 2(cos π3 + i sin π3)
x y θ r z = 1 + √ 3 O
(b) z = -1 + i = (-1, 1)
r = √ 1 + 1 = √ 2 ,       cos θ = - 1 2       sin θ = 1 2
θ = 4
z = √ 2 (cos 4 + i sin 4 )
x y θ r z = (-1, 1) O
(c) z = -√ 3 - i = ( -√ 3 - 1)
r = √ 3 + 1 = 2,       cos θ = - 3 2,       sin θ = - 1 2
θ = - 6
z = 2(cos (- 6 ) + i sin(- 6 ))

x y θ r z = (-√ 3, -1) O

(d) z = -1 = (-1, 0)
r = 1,       cos θ = -1,       sin θ = 0
θ = π
z = cos π + i sin π
x y θ r z = (-1, 0) O

ပံ့ပိုးကူညီသူ

Product in Trigonometric Form
Let z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2). Then their product is

z1z2 = r1(cos θ1 + i sin θ1) . r2(cos θ2 + i sin θ2)
= r1r2((cos θ1 cos θ2 - sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2))
= r1r2(cos(θ1 + θ2) + i sin((θ1 + θ2))

z1z2 = r1r2(cos(θ1 + θ2) + i sin((θ1 + θ2))


Example 6.
Given that z1 = 1 + √ 3 i, z2 = -1 + i, find z1z2 by using trigonometric forms. Check your answer by direct multiplication.

Solution

z1 = 1 + √ 3 i = 2(cos π 3 + i sin π 3)                (See Example 5(a))
z2 = -1 + i = √ 2 (cos 4 + i sin 4)                (See Example 5(b))
z1z2 = 2√ 2 [ cos ( π 3 + 4) + i sin ( π 3 + 4)]
= -1 - √ 3 + (1 - √ 3 )i

cos(θ1 + θ2) + i sin((θ1 + θ2) = (cos θ1 cos θ2   +   sin θ1 sin θ2)   +   i(sin θ1 cos θ2 + cos θ1 sin θ2)

2 √ 2 [ (cos π 3 . cos 4 - sin π 3 . sin 4)   +   i ( sin π 3 . cos 4 + cos π 3 . sin 4) ]
= 2 √ 2 [ { 1 2 . (- 1 2 ) - ( 3 2 . 1 2 ) }   +   i { 3 2 . (- 1 2 ) + 1 2 . 1 2 } ]
= 2 √ 2 [ ( - 1 2 √ 2 - 3 2 √ 2 )   +   i ( - √ 3 2 √ 2 + 12 √ 2 ) ]
= 2 √ 2 [ ( -1 - √ 3 2 √ 2 )   +   ( - √ 3 + 1 2 √ 2 ) i ]
= 2 √ 2 ( -1 - √ 3 2 √ 2 )   +   2 √ 2 ( - √ 3 + 1 2 √ 2 ) i
= -1 - √ 3   +   (1 - √ 3 )i

checking
z1z2 = (1 + √ 3 i)(-1 + i)
= -1 + i - √ 3 i + √ 3 i2
= -1 - √ 3 + (1 - √ 3 )i

Multiplicative Inverse in Trigonometric Form
Since z-1 = x x2 + y2 - y x2 + y2 i for z = x + yi,

z-1 = 1 x2 + y2 (x - yi)
= 1 r2 r (cos θ - i sin θ)
= 1 r(cos θ - i sin θ)

z-1 = 1 r(cos (-θ) + i sin (-θ))


Example 7.
Given that z = -√ 3 - i, using trigonometric form of z, find z-1. Check your answer by showing that zz-1 = 1.

Solution

z = -√ 3 - i
z = 2(cos (- 6) + i sin (- 6))                   (See Example 5(c))
z-1 = 1 2(cos 6 + i sin ( 6))
= 1 2 ( - 3 2 + 1 2 i)
= - 3 4 + 1 4 i
zz-1 = (-√ 3 - i) (- 3 4 + 1 4 i) = 3 4 - 3 4 i + 3 4 i - 1 4 i2 = 3 4 + 1 4 = 1

Division in Trigonometric Form
Let z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2). Then

z1 z2 = z1z2-1
= r1(cos θ1 + i sin θ1) 1 r2(cos(-θ2) + i sin(- θ2) + i sin(-θ2))
z1 z2 =r1 r2 (cos(θ1 - θ2) + i sin(θ1 - θ2))


Example 8.

Given that z1 = 1 +√ 3 i, z2 = -1 + i, find z1 z2 by using trigonometric form. Check your answer by direct solution.

Solution

z1 = 1 +√ 3 i = 2(cos π 3 + i sin π 3)
z2 = -1 + i = √ 2 (cos 4 + i sin 4)
z1 z2 = 2 2 (cos ( π 3 - 4) + i sin ( π 3 - 4))
= -1 + √ 3 2 - 1 + √ 3 2 i
z1 z2 = 1 + √ 3 i -1 + i -1 - i -1 - i
= -1 - i - √ 3 i - √ 3 i2 1 + 1
= -1 + √ 3 - (1 + √ 3 ) i 2
= -1 + √ 3 2 - 1 + √ 3 2 i

Powers of Complex Numbers
The power of a complex number z = r(cos θ + i sin θ) is given by
zn = rn (cos +i sin ),     n in an integer


Example 9.
Given that z = 1 + √ 3 i, find (a) z10       (b) z-10

Solution

z = 1 + √ 3 i = 2(cos π 3 + i sin π 3)               (See Example 5(a))
(a) z10 = 210 (cos 10 π 3 + i sin 10 π 3) = 1024 (- 1 2 - 3 2 i) = -512 - 512 √ 3 i

(b) z-10 = 1 210 (cos (- 10 π 3) + i sin (- 10 π 3)) = 1 1024 (- 1 2 + 3 2 i) = - 1 2048 + 3 2048 i

Exercise 1.4
  1. Find the trigonometric form with -π < θ ≤ π.
  2. (a) z = 1 - √ 3 i
    (b) z = - √ 2 + √ 2 i
    (c) z = -2 - 2i
    (d) z = √ 3 - i
    (e) z = i
    (f) z = -3i
  3. Given that z1 = 2 - 2√ 3 i, z2 = -1 - i, find the following complex numbers by using trigonometric forms. Check your answer by direct calculation.
  4. (a) z1z2
    (b) z1-1
    (c) z2-1
    (d) z1 z2
    (e) z2 z1
  5. Given that z = -2 √ 3 - 2i, find (a) z5       (b) z-5

Answer
1. (a)     z = 1 - √ 3 i
Solution
z = 1 - √ 3 i = (1, - √ 3 )

r = √ x2 + y2 = √ 1 + 3 = 2
x = r cos θ
xr = cos θ
12 = cos θ
cos θ = 12
r sin θ = y
sin θ = yr = - √ 3 2
θ = - π3
z = 2 ( cos - π 3 + i sin - π3)
x y θ r z = (1, - √ 3) O

(b)     z = - √ 2   + √ 2 i = ( - √ 2 , √ 2 )

r = √ x2 + y2 = √ 2 + 2 = 2
cos θ = x r = - √ 2 2
sin θ = yr = 2 2
θ = 4
z = r (cos θ + i sin θ)
= 2 (cos 4 + i sin 4)
x y θ r z = (-√2, √2) O
(c)     z = -2 - 2i = (-2, -2)

r = √ x2 + y2   =   √ (-2)2 + (-2)2   =   √ 8   =   2 √ 2
cos θ = xr = -22 √ 2 = -1 2
sin θ = y r = -2 2 √ 2 = -1 2
θ = -3π 4
z = r (cos θ + i sin θ)
    = 2 √ 2 ( cos -3π 4 + i sin -3π 4 )
x y θ r z = (-2, -2) O

(d)     z   =  √ 3 - i  =   (√ 3 , -1)

r = √ x2 + y2   =   √ 4   =  2
cos θ = x r = 3 2
sin θ = yr = -1 2
θ = 6
z = r ( cos θ + i sin θ)
= 2 (cos 6 + i sin 6 )
x y θ r z = ( √ 3, -1) O

(e)     z = i = (0, 1)

r = √ x2 + y2   =   √ 1   =   1
cos θ = x r   = 0 1 = 0
sin θ = y r = 1 1 = 1
θ = π2
z = r ( cos θ + i sin θ )
  = 1 (cos π2 + i sin π2)
cos π2 + i sin π2
x y θ r z = (0, 1) O
(f)     z = -3i = (0, -3)

r = √ x2 + y2   =   √ (-3)2 = 3
cos θ = xr = 03 = 0
sin θ = yr = -33 = -1
θ = 2
z = ( cos θ + i sin θ )
  = 3 ( cos 2 + i sin 2)
x y θ r z = (0, -3) O

2.    z1 = 2 - 2 √ 3 i,     z2 = -1 - i

z1 = 2 - 2 √ 3 i = (2, - 2 √ 3 )

r1 = √ x2 + y2   =   √ 22 + (-2 √3)2   =   = √ 4 + 12   =   4
cos θ = xr = 24 = 12
sin θ = yr = -2 √34 = -√32
θ1 = 3
z1 = r ( cos θ + i sin θ )
    = 4 ( cos 3 + i sin 3)
x y θ r z = (2, -2 √ 3) O

z2 = -1 - i = (-1, -1)

r2 = √ x2 + y2   =   √ (-1)2 + (-1)2   =   √ 2
cos θ = xr = -1 2
sin θ = yr = -1 2
x y θ r z = (-1, -1) O
θ2 = -3π 4
z2 = r2 ( cos θ2 + i sin θ2)
    = √ 2 ( cos -3π4 + i sin -3π4 )

(a)     z1z2 = r1r2 [ cos (θ1 + θ2) + i sin (θ1 + θ2 ) ]

    = 4 √ 2   [ { cos 3 + (-3π4)} + i { sin 3 + (-3π4) } ]

    = 4 √ 2   [ { cos 3 - 4} + i { sin 3 - 4 } ]

    = 4 √ 2   [ { ( cos 3 . cos -3π 4 ) - ( sin 3 . sin -3π4 ) } + i { sin 3 . cos -3π 4 ) + ( cos 3 . sin -3π4 ) } ]

    = 4 √ 2   [ { (12 . -1 2 ) - (- √ 3 2 . -1 2 ) } + i { ( - √ 3 2 . -1 2 ) + ( 1 2 . -1 2 ) } ]

    = 4 √ 2   [ ( -1 2 √ 2 - 3 2 √ 2 ) + i ( 3 2 √ 2 - 1 2 √ 2 ) ]

    = 4 √ 2   [ (-1 - √ 3 2 √ 2 ) + i ( 3   - 12 √ 2 ) ]

    = 4 √ 2 (-1 - √ 3 2 √ 2 )  +   4 √ 2 ( 3   - 12 √ 2 ) i

    = -2 - 2√ 3   +   (2√ 3   - 2) i

Checking
z1z2 = (2 - 2√ 3 i) (-1 - i)

    = -2 - 2i + 2√ 3 i + 2√ 3 i2

    = -2 - 2i + 2√ 3 i + 2√ 3 (-1)

    = -2 - 2√ 3   +   2√ 3 i - 2i

    = -2 - 2√ 3   +   (2√ 3 - 2) i

(b)     z1-1
z1 = 4 ( cos 3 + i sin 3 )

z1-1 = 14 ( cos π3 + i sin π3 )
    = 14 ( 12 + 3 2 i )
    = 18 + 3 8 i

(c)     z2-1
z2 = √ 2 (cos -3π4 + i sin -3π4 )
z2-1 = 1 2 ( cos 4 + i sin 4 )
      = 1 2 ( -1 2 + 1 2 i )
      = -1 2 . √ 2   +   1 2 . √ 2 i
      = -12 + 12 i

(d)     z1z2
z1z2 = r1r2 [ cos (θ1 - θ2) + i sin (θ1 - θ2) ]
      = 4 2 [ cos ( 3 - -3π4) + i sin ( 3 - -3π 4 ) ]
      = 4 2 [ cos (3 + 4 ) + i sin ( 3 + 4 ) ]
      = 4 2 [ ( cos 3 . cos 4   -   sin 3 . sin 4 )  +   i ( sin 3 . cos 4 + cos 3 . sin 4 ) ]
      = 4 2 [ ( 12 . -1 2   -   - √ 3 2 . 1 2 ) + i ( - √ 3 2 . -1 2   +   12 . 1 2 ) ]
      = 4 2 [ -12 √ 2 + 3 2 √ 2   +   ( 3 2 √ 2 + 12 √ 2 ) i ]
      = 4 2 [ -1 + √ 3 2 √ 2   +   3   + 12 √ 2 i ]
      = 4 2 ( -1 + √ 3 2 √ 2 )   +   4 2 ( 3   + 12 √ 2 ) i
      = -1 + √ 3   +   ( √ 3   + 1) i

Checking
z1z2 = 2 - 2√ 3 i-1 - i   ×   -1 + i-1 + i
      = -2 + 2i + 2√ 3 i - 2√ 3 i2 1 - i + i - i2
      = -2 + (2 + 2√ 3 ) i - 2√ 3 (-1)1 - (-1)
      = -2 + 2√ 3   +   (2√ 3   + 2) i2
      = 2 [-1 + √ 3   +   (√ 3   + 1) i ]2
      = -1 + √3   +   (√3 + 1) i

(e)     = z2z1
z2z1 = r2r1 [ cos (θ2 - θ1) + i sin (θ2 - θ1) ]
      = 2 4 [ cos ( -3π 4 - 3) + i sin ( -3π4 - 3 ) ]
      = 2 4 [ cos (-3π4 + π3 ) + i sin ( -3π4 + π3 ) ]
      = 2 4 [ ( cos -3π4 . cos π3   -   sin -3π4 . sin π3 )  +   i ( sin -3π4 . cos π3 + cos -3π4 . sin π3 ) ]
      = 2 4 [ ( -1 2 . 12   -   -1 2 . 3 2 ) + i ( -1 2 . 12   +   -1 2 . 3 2 ) ]
      = 2 4 [ -12 √ 2 + 3 2 √ 2   +   ( -12 √ 2 + - √ 3 2 √ 2 ) i ]
      = 2 4 [ -1 + √ 3 2 √ 2   -   1 + √ 3 2 √ 2 i ]
      = 2 4 ( -1 + √ 3 2 √ 2 )   -   2 4 ( 1 + √ 3 2 √ 2 ) i
      = -1 + √ 3 8   -   ( 1 + √ 3 8) i

Checking
z2z1 = -1 - i2 - 2√ 3 i   ×   2 + 2√ 3 i2 + 2√ 3 i
      = -2 - 2√ 3 i - 2i - 2√ 3 i2 4 + 4√ 3 i - 4√ 3 i - 4(3) i2

      = -2 + ( -2√ 3   - 2 ) i - 2√ 3 (-1)4 - 12(-1)

      = -2 + 2√ 3   -   (2√ 3   + 2) i16

      = 2 [-1 + √ 3   -   (√ 3   + 1) i ]16

      = -1 + √ 3 8   -   ( 3   + 18 ) i

3.    z = -2√ 3 - 2i = (-2√ 3 , -2)

r = √ x2 + y2 = √ (- 2√ 3 )2 + (-2)2 = √ 16   = 4

cos θ = xr = - 2√ 3 4   = - 3 2
sin θ = yx = -24 = -12
      θ = - 6
z = r (cos θ + i sin θ )
  = 4 ( cos -5π6  +   i sin -5π6 )
zn = rn ( cos n θ + i sin n θ)
(a)  z5 = 45 ( cos 5 . -5π6 + i sin 5 . -5π6 )
      = 1024 ( cos -25π6   +   i sin -25π6 )
      = 1024 [ cos -(24 + 1)π6   +   i sin -(24 + 1)π6 ]
      = 1024 [ cos - (24π6 + π6)   +   i sin - ( 24π6 + π6 ) ]
      = 1024 [ cos - ( 4π + π6)   +   i sin - (4π + π6 ) ]
      = 1024 [ cos - ( 2π + 2π + π6)   +   i sin - (2π + 2π + π6 ) ]
      = 1024 [ cos 6   +   i sin 6 ]
(Just take π6 and the two full cycles of 2π is ignored)
      = 1024 [ 3 2 + (- 12)i ]
      = 512 √ 3   -   512 i

(b)   z-5 = 145 [ cos 5(-5 π6)   +   i sin 5 (-5π6 ) ]
      = 11024 [ cos -25π6   +   i sin -25π6 ) ]
      = 11024 [ cos -(24 + 1)π6   +   i sin -(24 + 1)π6 ]
      = 11024 [ cos - (24π6 + π6)   +   i sin - ( 24π6 + π6 ) ]
      = 11024 [ cos - ( 4π + π6)   +   i sin - (4π + π6 ) ]
      = 11024 [ cos - ( 2π + 2π + π6)   +   i sin - (2π + 2π + π6 ) ]
      = 11024 [ cos 6   +   i sin 6 ]
(Just take π6 and the two full cycles of 2π is ignored)
      = 11024 [ 3 2 + (- 12)i ]
      = 3 2048 - 12048i

photo of exercise 1.4, No.2 (d)
Image of exercise 1.4, No.2 (d)