(PQ) = (l,m,n) = (x2 - x1, y2 - y1, z2 - z1) |
PQ = √ (x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2 = √ l2 + m2 + n2 |
(x, y, z) = (x1 + kl, y1 + km, z1 + kn) |
x - x1 ⁄ l = y - y1 ⁄ m = z - z1 ⁄ n |
(x, y, z) | = | (3 + 1⁄ 2 (-6), 1 + 1⁄2 (6), 5 + 1⁄2(-7) ) |
= | (3 + (-3), 1 + 3, 5 - 7 ⁄ 2 ) | |
= | (0, 4, 3⁄ 2 ) |
(x, y, z) | = | (3 + 3(-6), 1 + 3(6), 5 + 3(-7) ) |
= | (-15, 19, -16) |
(x, y, z) | = | (3 + (-2)(-6), 1 + (-2)(6), 5 + (-2)(-7)) |
= | (3+12, 1-12, 5+14) | |
= | (15, -11, 19) |
(x, y, z) | = | (3+1k, 2+0k, -1+6k) |
= | (3+k, 2, -1+6k |
3 + k | = | 5 |
k | = | 5 - 3 |
k | = | 2 |
-1 + 6k | = | 11 |
6k | = | 11 + 1 |
6k | = | 12 |
k | = | 2 |
3 + k | = | 2 |
k | = | 2 - 3 |
k | = | -1 |
-1 + 6k | = | -7 |
6k | = | -7 + 1 |
6k | = | -6 |
k | = | -1 |
3 + k | = | 7⁄ 2 |
k | = | 7⁄ 2 - 3 |
k | = | 7 - 6⁄ 2 |
= | 1⁄ 2 |
-1 + 6k | = | 2 |
6k | = | 2 + 1 |
6k | = | 3 |
k | = | 3⁄ 6 |
= | 1⁄ 2 |
3 + k | = | 6 |
k | = | 6 - 3 |
k | = | 3 |
-1 + 6k | = | 10 |
6k | = | 10 + 1 |
6k | = | 11 |
k | = | 11⁄6 |
5 - 9k | = | 0 |
-9k | = | -5 |
k | = | -5⁄-9 |
= | 5⁄9 |
(x, y, z) | = | (2 + 5⁄9, 4 + 5⁄9 , 5 - 9 ⋅ 5⁄9 ) |
= | (18 + 5⁄9, 36 + 5⁄9 , 0) | |
= | (23⁄9, 41⁄9 , 0) |
2 + k | = | 0 |
k | = | -2 |
(x, y, z) | = | (2 + (-2), 4 + (-2), 5 - 9(-2)) |
= | (2 - 2, 4 - 2, 5 + 18) | |
= | (0, 2, 23) |
4 + k | = | 0 |
k | = | -4 |
(x, y, z) | = | (2 + (-4), 4 + (-4), 5 - 9(-4)) |
= | (2 - 4, 4 - 4, 5 + 36) | |
= | (-2, 0, 41) |
Copyright © arckharer