Parallel lines:
Two lines are parallel if and only if their directed values are multiples of each other by some real number.
x = 2 + 4s | x = 2 - 3t |
y = 1 - 6s | y = 3 + 2t |
z = 3 + s | z = 4 - 3t |
2 + 4s | = 2 - 3t |
1 - 6s | = 3 + 2t |
3 + s | = 4 - 3t |
(AP) | = (l1, m1>1, n1) = (x1 -a, y1 - b, z1 - c) |
(AQ) | = (l2, m2, n2) = (x2 - a, y2 - b, z2 - c) |
(PQ) | = (l3, m3, n3) |
= (x2 - x1, y2 - y1, z2 - z1) | |
= (l2 - l1, m2 - m1, n2 - n1) |
(AP)2 + (AQ)2 - (PQ)2 | = l12 + m12 + n12 + l22 + m22 + n22 - (l2 - l1)2 - (m2 - m1)2 - (n2 - n1)2 |
= 2(l1l2 + m1m2 + n1n2) |
cos ∠PAQ | = (AP)2 + (AQ)2 - (PQ)2 ⁄ 2 . AP . AQ |
= 2 (l1l2 + m1m2 + n1n2) ⁄ 2 . AP . AQ | |
= l1l2 + m1m2 + n1n2 ⁄ √ l12 + m12 + n12 √ l22 + m22 + n22 |
x = 0 + 3s | x = 0 + 3t |
y = 0 + 6s | y = 3 - 3t |
z = 1 + 3s | z = 1 + 3t |
3s | = 3t |
6s | = 3 - 3t |
1 + 3s | = 1 + 3t |
2 (-7 - 2k) + 3 (8 - 3k) + (-1) (-4 + k) | = | 0 |
-14 - 4k + 24 - 9k + 4 - k | = | 0 |
14 k | = | 14 |
k | = | 1 |
Exercise 3.3
1. Find cos ∠PAQ for the followings.
(a) P(1, 2, -1), A(-2, 1, 5), Q(2, -1, 0)
Solution
x1 = 1, y1 = 2, z1 = -1
and a = -2, b = 1, c = 5
AP | = | (l1, m1, n1) |
= | (x1 - a, y1 - b, z1 - c) | |
= | (1 - (-2), 2 - 1, -1 - 5 ) | |
= | (3, 1, -6) |
AQ | = | (l2, m2, n2) |
= | (x2 - a, y2 - b, z2 - c) | |
= | (2 - (-2), -1 - 1, 0 - 5 ) | |
= | (4, -2, -5) |
PQ | = | (l3, m3, n3) |
= | (x2 - x1, y2 - y1, z2 - z1) | |
= | (2 - 1, -1 - 2, 0 - (-1) ) | |
= | (1, -3, 1) |
AP | = | (l1, m1, n1) |
= | (x1 - a, y1 - b, z1 - c) | |
= | (0 - 2, 2 - (-1), -3 - 5 ) | |
= | (-2, 3, -8) |
AQ | = | (l2, m2, n2) |
= | (x2 - a, y2 - b, z2 - c) | |
= | (-2 - 2, 3 - (-1), -1 - 5 ) | |
= | (-4, 4, -6) |
PQ | = | (l3, m3, n3) |
= | (x2 - x1, y2 - y1, z2 - z1) | |
= | (-2 - 0, 3 - 2, -1 - (-3) ) | |
= | (-2, 1, 2) |
x = 3 - s | x = 3 - 4t |
y = -1 - 2s | y = -2 |
z = -3 + 4s | z = 5 - 4t |
3 - s | = | 3 - 4t |
-s | = | - 4t |
s | = | 4t eq_______ (1) |
-1 - 2s | = | -2 |
-2s | = | -1 |
s | = | 1 ⁄ 2 |
-3 + 4 (1⁄2) | = | 5 - 4 (1⁄8) |
-3 + 2 | = | 5 - 1 ⁄ 2 |
-1 | = | 9 ⁄ 2 (impossible) |
-1 | ≠ | 9 ⁄ 2 |
x = 4 - 6s | x = -1 + 4t |
y = -2 + 8s | y = 1 + 2t |
z = 5 - 4s | z = 4 - 2t |
4 - 6s | = | -1 + 4t |
4 | = | -1 + 6s + 4t |
5 | = | 6s + 4t |
6s + 4t | = | 5 eq_______ (1) |
-2 + 8s | = | 1 + 2t |
-2 + 8s - 2t | = | 1 |
8s - 2t | = | 3 eq_______ (2) |
5 - 4s | = | 4 - 2t |
5 - 4s + 2t | = | 4 |
-4s + 2t | = | -1 eq_______ (3) |
x | = | 4 - 6s |
= | 4 - 6 (1⁄2) | |
= | 4 - 3 | |
= | 1 |
y | = | -2 + 8s |
= | 2 + 8 (1⁄2) | |
= | -2 + 4 | |
= | 2 |
z | = | 5 - 4s |
= | 5 - 4 (1⁄2) | |
= | 5 - 2 | |
= | 3 |
l1l2 + m1m2 + n1n2 | = | (-6) 4 + 8 ⋅ 2 + (-4)(-2) |
= | -24 + 16 + 8 | |
= | 0 |
x = -3 + 2s | x = -4t |
y = -1 + 4s | y = 6 - 10t |
z = 6 - 6s | z = 7 - 8t |
2s + 4t | = | 3 |
2s + 4 (1⁄2) | = | 3 |
2s + 2 | = | 3 |
2s | = | 1 |
s | = | 1⁄2 |
4s + 10t | = | 7 |
4 (1⁄2) + 10 (1⁄2) | = | 7 |
2 + 5 | = | 7 |
x | = | -3 + 2s |
= | -3 + 2 (1⁄2) | |
= | -2 |
y | = | -1 + 4s |
= | -1 + 4 (1⁄2) | |
= | -1 + 2 | |
= | 1 |
z | = | 6 - 6s |
= | 6 - 6 (1⁄2) | |
= | 6 - 3 | |
= | 3 |
l1l2 + m1m2 + n1n2 | = | 2 (-4) + 4 (-10) + (-6) (-8) |
= | -8 - 40 + 48 | |
= | 0 |
(x, y, z) | = | (1 + 2k, 2 - k, 3 - 7k) |
= | (1 + 2k, 2 - 1k, 3 - 7k) |
(x, y, z) | = | (1 + 2k, 2 - k, 3 - 7k) |
(x1, y1, z1) | = | (8, -1, -10) |
line2 | = | (x1 - x, y1 - y, z1 - z) |
= | (8 - (1 + 2k), -1 - (2 - k), -10 - (3 - 7k) ) | |
= | (8 - 1 - 2k, -1 - 2 + k, -10 - 3 + 7k) | |
= | (7 - 2k, -3 + k, -13 + 7k) |
(l1l2 + m1m2 + n1n2) | = | 0 |
2 (7 - 2k) + (-1 (-3 + k)) + (-7 (-13 + 7k)) | = | 0 |
2 (7 - 2k) - 1 (-3 + k) - 7 (-13 + 7k) | = | 0 |
14 - 4k + 3 - k + 91 - 49k | = | 0 |
108 - 54k | = | 0 |
-54k | = | -108 |
k | = | - 108⁄- 54 |
= | 2 |
(7 - 2k, -3 + k, -13 + 7k) | = | (7 - 2(2), -3 + 2, -13 + 7(2)) |
= | 7 - 4, -1, -13 + 14) | |
= | (3, -1, 1) |
(x, y, z) | = | (1 + 2k, 2 - k, 3 - 7k) |
= | (1 + 2(2), 2 - 2, 3 - 7(2) ) | |
= | 1 + 4, 0, 3 - 14) | |
= | 5, 0, -11) |
Copyright © arckharer.org