Exercise 4.2
$$1. \hspace{0.2cm} For \, \, \vec{p} = \begin{pmatrix}3\\2\end{pmatrix}, \hspace{0.3cm} \vec{q} = \begin{pmatrix}-1\\5\end{pmatrix}\,
and \, \, \vec{r} = \begin{pmatrix}-2\\4\end{pmatrix}, \, find:$$
$$(a) \quad \vec{q} \cdot \vec{p} \hspace{1cm} (b) \quad \vec{q} \cdot \vec{r} \hspace{1cm}(c) \quad \vec{q} \cdot (\vec{p} + \vec{r}) \newline
(d) \quad \hat{i} \cdot \vec{p} \hspace{1cm} (e) \quad \vec{q} \cdot \hat{j} \hspace{1cm} (f) \quad \hat{i} \cdot \hat{i}.$$
$$\textbf{Solution}$$
$$(a) \quad \vec{q} \cdot \vec{p} = \begin{pmatrix}-1\\5\end{pmatrix} \cdot \begin{pmatrix}3\\2\end{pmatrix}$$
$$= (-1) \times 3 \quad + \quad 5 \times 2$$
$$= -3 + 10$$
$$= 7\newline$$
$$(b) \quad \vec{q} \cdot \vec{r} = \begin{pmatrix} -1\\5\end{pmatrix} \cdot \begin{pmatrix}-2\\4\end{pmatrix}$$
$$= (-1) \times (-2) \quad + \quad 5 \times 4$$
$$= 2 + 20$$
$$= 22 \newline$$
$$(c) \quad \vec{q} \cdot (\vec{p} + \vec{r}) = \begin{pmatrix} -1\\5\end{pmatrix} \cdot \left[\begin{pmatrix}3\\2\end{pmatrix} + \begin{pmatrix}-2\\4\end{pmatrix}
\right]$$
$$= \begin{pmatrix}-1\\5\end{pmatrix} \cdot \begin{pmatrix}1\\6\end{pmatrix}$$
$$= (-1) \times 1 \quad + \quad 5 \times 6$$
$$= -1 + 30$$
$$= 29$$
$$\newline$$
$$(d) \quad \hat{i} \cdot \vec{p} = \begin{pmatrix} 1\\0\end{pmatrix} \cdot \begin{pmatrix}3\\2\end{pmatrix}$$
$$= 1 \times 3 \quad + \quad 0 \times 2$$
$$= 3 + 0$$
$$ = 3$$
$$(e) \quad \vec{q} \cdot \vec{j} = \begin{pmatrix} -1\\ 5\end{pmatrix} \cdot \begin{pmatrix}0\\1\end{pmatrix}$$
$$= (-1) \times 0 \quad + \quad 5 \times 1$$
$$= 0 + 5$$
$$= 5$$
$$(f) \quad \hat{i} \cdot \hat{i} = \begin{pmatrix}1\\0\end{pmatrix} \cdot \begin{pmatrix}1\\0\end{pmatrix}$$
$$ = 1 \times 1 \quad 0 \times 0 $$
$$ = 1 $$
$$\maroonE{\hat{i} = (1, 0) \,\,\text{and} \,\, \hat{j} = (0, 1)\,\, \text{are called standard unit vectors.}}$$
$$2. \quad For \,\, \vec{a} = \begin{pmatrix}2\\1\\3 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \quad and \, \,
\vec{c} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} , \quad find:$$
$$(a) \quad \vec{a} \cdot \vec{b} \qquad (b) \,\, \vec{b} \cdot \vec{a} \qquad (c) \,\, \left|\vec{a}\right|^2 $$
$$ (d) \,\, \vec{a} \cdot \vec{a} \qquad (e) \,\, \vec{a} \cdot \left( \vec{b} + \vec{c} \right) \qquad (f) \,\, \vec{a} \cdot \vec{b} \quad + \quad \vec{a} \cdot
\vec{c}.$$
Solution
$$(a) \quad \vec{a} \cdot \vec{b} = \begin{pmatrix} 2 \\ 1\\ 3 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$
$$= 2 \times (-1) \quad + \quad 1 \times 1 \quad + \quad 3 \times 1$$
$$= -2 + 1 + 3$$
$$= 2$$
$$(b) \quad \vec{b} \cdot \vec{a} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix}2 \\ 1 \\ 3 \end{pmatrix}$$
$$= (-1) \times 2 \quad + \quad 1 \times 1 \quad + \quad 1 \times 3$$
$$= -2 + 1 + 3 $$
$$= 2$$
$$(c) \quad \left|\vec{a}\right| = \sqrt{2^2 + 1^2 + 3^2} $$
$$= \sqrt{14} $$
$$ \left|\vec{a}\right|^2 = \left( \sqrt{14} \right)^2$$
$$= 14$$
$$(d) \quad \vec{a} \cdot \vec{a} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
$$= 2 \times 2 \quad + \quad 1 \times 1 \quad + \quad 3 \times 3 $$
$$= 4 + 1 + 9 $$
$$= 14$$
$$(e) \quad \vec{a} \cdot (\vec{b} + \vec{c}) = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \cdot \left[\begin{pmatrix}-1 \\ 1 \\ 1\end{pmatrix} + \begin{pmatrix} 0 \\
-1 \\ 1 \end{pmatrix}\right] $$
$$= \begin{pmatrix}2 \\ 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} $$
$$ = 2 \times (-1) \quad + \quad 1 \times 0 \quad + \quad 3 \times 2 $$
$$= -2 + 0 + 6 $$
$$= 4$$
$$(f) \quad \vec{a} \cdot \vec{b} \quad + \quad \vec{a} \cdot \vec{c} = \begin{pmatrix}2 \\ 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}
\quad + \quad \begin{pmatrix}2 \\ 1 \\ 3\end{pmatrix} \cdot \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
$$= [2 \times (-1) \,\, + \,\, 1 \times 1 \,\, + \,\, 3 \times 1] \quad + \quad [2 \times 0 \,\, + \,\, 1 \times (-1) \,\, + \,\, 3 \times 1]$$
$$= (-2 + 1 + 3) \quad + \quad (0 - 1 + 3)$$
$$= 2 + 2$$
$$= 4$$
$$3. \quad \text{Find the angle between} \,\, \vec{m} \,\, \text{and} \,\, \vec{n} \,\, \text{if:}$$
$$\text{(a)} \quad \vec{m} = \begin{pmatrix}2 \\ -1 \\ -1 \end{pmatrix} \quad \text{and} \quad \vec{n} = \begin{pmatrix}-1 \\ 3 \\ 2\end{pmatrix}$$
$$\text{(b)} \quad \vec{m} = 2\hat{j} - \hat{k} \quad and \quad \vec{n} = \hat{i} + 2\hat{k}.$$
Solution
$$\text{(a)} \quad \left|\vec{m}\right| = \sqrt{2^2 + (-1)^2 + (-1)^2} = \sqrt{6} $$
$$\left|\vec{n}\right| = \sqrt{(-1)^2 + 3^2 + 2^2} = \sqrt{14}$$
$$\vec{m} \cdot \vec{n} = \begin{pmatrix}2 \\ -1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$$
$$= 2 \times (-1) \quad + \quad (-1) \times 3 \quad + \quad (-1) \times 2$$
$$= -2 - 3 - 2$$
$$= -7$$
$$\text{cos}\, \theta = \dfrac{\vec{m} \cdot \vec{n}}{\left|\vec{m}\right| \left|\vec{n}\right|}$$
$$= \dfrac{-7}{\sqrt{6} \sqrt{14} }$$
$$= \dfrac{-7} {\sqrt{84}}$$
$$\text{cos} \, \theta = - 0.7638$$
$$\theta = cos^{-1} (- 0.7638)$$
$$ = - cos^{-1} 0.7638)$$
$$= - 40.1996^{\circ}$$
The solution of cos θ = - 0.7638 is
θ = 180 - 40.1996
= 139.8004°
$$\text{(b)} \quad \vec{m}= 2\hat{j} - \hat{k}$$
$$= 2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix}0 \\ 0 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} - \begin{pmatrix}0 \\ 0 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix}0 \\ 2 \\ -1 \end{pmatrix}$$
$$\vec{n} = \hat{i} + 2\hat{k}$$
$$= \begin{pmatrix}1 \\ 0 \\ 0 \end{pmatrix} + 2\begin{pmatrix}0\\ 0 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix}1\\0\\0\end{pmatrix} + \begin{pmatrix}0\\0\\2 \end{pmatrix}$$
$$= \begin{pmatrix}1\\0\\2\end{pmatrix}$$
$$\left|\vec{m}\right| = \sqrt{0^2 + 2^2 + (-1)^2} = \sqrt{5}$$
$$\left|\vec{n}\right| = \sqrt{1^2 + 0^2 + 2^2} = \sqrt{5}$$
$$\vec{m} \cdot \vec{n} = \begin{pmatrix}0\\2\\-1 \end{pmatrix} \cdot \begin{pmatrix}1\\0\\2 \end{pmatrix}$$
$$= 0 \times 1 \quad + \quad 2 \times 0 \quad + \quad (-1) \times 2$$
$$= 0 + 0 - 2$$
$$= -2$$
$$\text{cos} \,\, \theta = \dfrac{\vec{m} \cdot \vec{n}} {\left|\vec{m}\right| \left|\vec{n}\right|}$$
$$= \dfrac{-2} {\sqrt{5} \sqrt{5}} = \dfrac{-2}{5} = -0.4$$
θ = cos-1 (-0.4)
= - cos-1 0.4
= - 66.4218
The solution of cos θ = -0.4 is
θ = 180 - 66.4218
= 113.5782°
4. Find t if the given pair of vectors are:
(i) Perpendicular (ii) parallel
$$\text{(a)} \quad \vec{p} = \begin{pmatrix}3\\t \end{pmatrix} \quad and \quad \vec{q} = \begin{pmatrix}-2\\1 \end{pmatrix},$$
$$\text{(b)} \quad \vec{r} = \begin{pmatrix}t \\ t + 2 \end{pmatrix} \quad and \quad \vec{s} = \begin{pmatrix}t \\ -4 \end{pmatrix},$$
$$\text{(c)} \quad \vec{a} = \begin{pmatrix}0 \\ t + 2 \end{pmatrix} \quad and \quad \vec{b} = \begin{pmatrix}2 - 3t \\ t \end{pmatrix}.$$
Solution
$$\text{(a)} \, (i) \quad \text{If} \,\, \vec{p} \,\, \text{and}\,\, \vec{q} \,\, \text{are perpendicular, then}$$
$$\vec{p} \cdot \vec{q} = 0$$
$$\begin{pmatrix}3\\t\end{pmatrix} \cdot \begin{pmatrix}-2 \\ 1 \end{pmatrix} = 0 $$
$$3 \times (-2) \quad + \quad t \times 1 = 0$$
$$-6 + t = 0$$
$$t = 6$$
$$\text{(ii) \quad If} \,\, \vec{p} \,\, \text{and} \,\, \vec{q} \,\, \text{are parallel, then}$$
$$\vec{p} \cdot \vec{q} = \left|\vec{p}\right| \left|\vec{q}\right|$$
$$\begin{pmatrix}3\\t\end{pmatrix} \cdot \begin{pmatrix}-2\\1 \end{pmatrix} = \sqrt{3^2 + t^2} \sqrt{(-2)^2 + 1^2}$$
$$3 \times (-2) \quad + \quad t \times 1 = \sqrt{9 + t^2} \sqrt{5}$$
Squaring both sides
(-6 + t)2 = (
√
9 + t2 -
√
5 )2
36 - 12t + t2 = (9 + t2) 5
36 - 12t + t2 = 45 + 5t2
0 = 4t2 + 12t + 9
(2t + 3) (2t + 3) = 0
(2t + 3)2 = 0
[ (2t + 3)2 = 0 ,]
1 &frasl 2
2t + 3 = 0
2t = -3
t = - 3 ⁄2
$$\text{(b)\, (i) \quad If} \,\, \vec{r} \,\, \text{and} \,\, \vec{s} \,\, \text{are perpendicular, then} $$
$$\vec{r} \cdot \vec{s} = 0$$
$$\begin{pmatrix}t \\ t + 2 \end{pmatrix} \cdot \begin{pmatrix}t \\ -4 \end{pmatrix} = 0$$
t × t + (t + 2) × (-4) = 0
t2 - 4t - 8 = 0
t2 - 4t = 8
(t - 2)2 - 4 = 8
(t - 2)2 = 12
√
(t - 2)2 =
± √
12
t - 2 = ± √
12
t = 2 ± √
12
= 2 ± √
4 × 3
= 2 ± 2√
3
$$\text{(ii) \,\, \, If} \,\, \vec{r} \,\, \text{and} \,\, \vec{s} \,\, \text{are parallel, then}$$
$$\vec{r} \cdot \vec{s} = \left| \vec{r}\right| \left|\vec{s}\right|$$
$$\begin{pmatrix}t \\ t + 2 \end{pmatrix} \cdot \begin{pmatrix}t \\ -4 \end{pmatrix} = \sqrt{t^2 + (t + 2)^2} \sqrt{t^2 + (-4)^2} $$
t × t + (t + 2) × (-4) =
√
t2 + t2 + 4t + 4
√
t2 + 16
t2 - 4t - 8 =
√
2t2 + 4t + 4
√
t2 + 16
Squaring both sides
(t2 - 4t - 8)2 = (2t2 + 4t + 4) (t2 + 16)
$$t^4 - 8t^3 + 64t + 64 = 2t^4 + 4t^3 + 36t^2 + 64t + 64$$
$$t^4 - 8t^3 + \cancel{64t} + \cancel{\purpleD{64}} = 2t^4 + 4t^3 + 36t^2 + \cancel{64t} + \cancel{\purpleD{64}}$$
$$0 = t^4 + 12t^3 + 36t^2$$
$$t^2 (t^2 + 12t + 36) = 0$$
$$t^2 = 0 \quad \text{or} \quad t^2 + 12t + 36 = 0$$
$$t \cdot t = 0 \quad \text{or} \quad (t + 6)(t + 6) = 0$$
$$t = \dfrac{0}{t} \quad \text{or} \quad t + 6 = \dfrac{0}{t + 6}$$
$$t = 0 \quad \text{or} \quad t + 6 = 0$$
$$ t = 0 \quad \text{or} \quad t = -6$$
$$\text{(c) \,\, (i) \quad If} \,\, \vec{a} \,\, \text{and} \,\, \vec{b} \,\, \text{are perpendicular, then} $$
$$\vec{a} \cdot \vec{b} = 0$$
$$\begin{pmatrix}0\\t + 2 \end{pmatrix} \cdot \begin{pmatrix}2 - 3t\\ t \end{pmatrix} = 0$$
$$0 \times (2 - 3t) \quad + \quad (t + 2) \times t = 0$$
$$0 + t^2 + 2t = 0$$
$$t (t + 2) = 0$$
$$t = 0 \quad \text{or} \quad t + 2 = 0$$
$$t = 0 \quad \text{or} \quad t = -2$$
$$\text{(ii)} \quad \vec{a} \,\, \text{and} \,\, \vec{b} \text{are parallel.}$$
$$\vec{b} = k\vec{a}$$
$$\begin{pmatrix}2 - 3t\\ t \end{pmatrix} = k \begin{pmatrix}0 \\ t + 2 \end{pmatrix}$$
$$\begin{pmatrix}2 - 3t \\ t \end{pmatrix} = \begin{pmatrix}0 \\ k (t + 2) \end{pmatrix}$$
$$2 - 3t = 0$$
$$-3t = -2$$
$$t = \dfrac{\cancel{-}2} {\cancel{-} 3}$$
$$t = \dfrac{2}{3}$$
$$\text{5. \quad Find} \,\, t \,\, if \,\, \begin{pmatrix}3\\t\\-2 \end{pmatrix} \,\, \text{is perpendicular to} \,\, \begin{pmatrix}1 - t\\ -3 \\ 4 \end{pmatrix}$$
Solution
$$\begin{pmatrix}3\\t\\-2 \end{pmatrix} \,\, \text{is perpendicular to} \,\, \begin{pmatrix}1 - t\\ -3 \\ 4 \end{pmatrix}$$
$$\therefore \,\, \begin{pmatrix}3\\t\\-2 \end{pmatrix} \cdot \begin{pmatrix}1 - t\\ -3 \\ 4 \end{pmatrix} = 0$$
$$3 \times (1 - t) \quad + \quad t \times (-3) \quad + \quad (-2) \times 4 = 0$$
$$3 - 3t \,\, - \,\, 3t \,\, -\,\,8 = 0$$
$$-6t - 5 = 0$$
$$-6t = 5$$
$$t = \dfrac{-5}{6}$$
$$\text{6.} \quad ABCD \,\, \text{is a parallelogram with} \,\,AB \,\, \text{parallel to} \,\, DC. \quad \text{Let} \,\,
\overrightarrow{AB} = \vec{a} \,\, \text{and} \,\, \overrightarrow{AD} = \vec{b}.$$
$$\text{(a) \,\, Express} \,\, \overrightarrow{AC} \,\, \text{and} \,\, \overrightarrow{BD} \,\, \text{in terms of} \,\, \vec{a} \,\, \text{and} \,\, \vec{b}.$$
$$\text{(b) \,\, Simplify} \,\, (\vec{a} + \vec{b}) \cdot (\vec{b} - \vec{a})$$
$$\text{(c) \,\, Hence show that if} \,\, ABCD \,\, \text{is a rhombus then its diagonals are perpendicular.}$$
Solution
$$\text{(a)} \quad \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$
$$= \vec{a} + \vec{b}$$
$$\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD}$$
$$= - \overrightarrow{AB} + \overrightarrow{AD}$$
$$= - \vec{a} + \vec{b}$$
$$\text{(b)} \quad (\vec{a} + \vec{b}) \cdot (\vec{b} - \vec{a}) = \vec{a}\cdot\vec{b} - \vec{a}\cdot\vec{a} + \vec{b}\cdot\vec{b} - \vec{b}\cdot\vec{a}$$
$$= \vec{a}\cdot\vec{b} - \left|\vec{a}\right|^2 + \left|\vec{b}\right|^2 - \vec{a}\cdot\vec{b}$$
$$= \left|\vec{b}\right|^2 - \left|\vec{a}\right|^2$$
$$\text{(c) \quad If} \,\, ABCD \,\, \text{is a rhombus, then}$$
$$\left|\overrightarrow{AB}\right| = \left|\overrightarrow{AD}\right|$$
$$\therefore \left|\vec{a}\right| = \left|\vec{b}\right| $$
$$ \left|\vec{a}\right|^2 = \left|\vec{b}\right|^2 $$
$$\overrightarrow{AC} \cdot \overrightarrow{BD} = (\vec{a} + \vec{b}) \cdot (\vec{b} - \vec{a}) $$
$$= \vec{a}\cdot\vec{b} - \left|\vec{a}\right|^2 + \left|\vec{b}\right|^2 - \vec{a}\cdot\vec{b}$$
$$= \left|\vec{b}\right|^2 - \left|\vec{a}\right|^2$$
$$= \left|\vec{b}\right|^2 - \left|\vec{b}\right|^2 \qquad (\because \left|\vec{a}\right|^2 = \left|\vec{b}\right|^2)$$
$$= 0$$
$$\therefore \overrightarrow{AC}\,\, \perp \,\, \overrightarrow{BD}$$
«
Previous
Next »