The vector product is only defined when both vectors are three-dimensional. The vector product ( or cross product) of
a=x1y1z1andb=x2y2z2,is given bya×b=x1y1z1×x2y2z2=y1z2−z1y2z1x2−x1z2x1y2−y1x2
Instead of memorizing the formula for the vector product try using the following shortcut.
(1) Eliminate the component column that you are trying to calculate.
(2) Calculate: Down product - Up Product.
The direction ofa×bis perpendicular to bothaandbas shown in the diagram.We have known that the nonzero vectorsaandbare perpendicular ifa⋅b=0.We will examine:(a×b)⋅a.Leta=x1y1z1andb=x2y2z2.
Then
(a×b)⋅a=y1z2−z1y2z1x2−x1z2x1y2−y1x2⋅x1y1z1=(y1z2−z1y2)x1+(z1x2−x1z2)y1+(x1y2−y1x2)z1=x1y1z2−x1y2z1+x2y1z1−x1y1z2+x1y2z1−x2y1z1=0Thereforea×ais perpendicular toa.Similarly, we can show thata×ais also perpendicular tob.The vector product ofa=x1y1z1andb=x2y2z2,has magnitude∣a∣bsinθ,whereθis the angle betweenaandb.
Area of a Parallelogram
Consider the parallelogram OACB lying on the plane, with the vectors
aandb
as shown in the diagram. Then the area of OACB is given by
OAbsinθ=∣a∣(bsinθ)=a×b,
i.e., the area of the parallelogram with sides defined by vectors OA=a=x1y1z1andOB=b=x2y2z2
is equal to the magnitude of the vector a×b.
Consequently, α(△ACB)=21(α(OACB))=21a×b.
Example 12.
Find the area of the parallelogram determined by the vectors a=123andb=14−1 Solution
We can find that a×b=123×14−1=2×(−1)−3×43×1−1×(−1)1×4−2×1=−1442.Now,a×b=196+16+4=216.
Therefore the area of the parallelogram is 216unit2.
Example 13.
Find the area of the triangle ABC with vertices A(1, -1, 3), B(0, 4, 1) and C(2, 7, 2). Solution AB=OB−OA=041−1−13=−15−2andAC=OC−OA=272−1−13=18−1.
Then, we find their vector product AB×AC=−15−2×18−1=11−3−13.NextAB×AC=112+(−3)2+(−13)2=299.
Therefore, we have Area of triangleABC=21AB×AC=21299unit2.
Algebraic Properties of the Vector Product
Ifa,bandcare vectors in space andkis a scalar, then1.a×b=−(b×a),2.(ka)×b=k(a×b),3.a×(b+c)=(a×b)+(a×c),4.a×0=0.
Geometric Properties of the Vector Product
1.If two nonzero vectorsaandbare parallel, thena×b=0.In particular,a×a=0.2. If two nonzero vectorsaandb
are perpendicular, then a×b=∣a∣b.
Example 14. (a) Calculatea×bwhena=3i^+2j^+5k^andb=i^−4j^+2k^.(b) Find a unit vectorn^that is perpendicularto bothaandb.Solution (a)a×b=325×1−42=2×2−5×(−4)5×1−3×23×(−4)−2×1=24−1−14. (b)a×b=24−1−14
This vector is perpendicular to aandb.a×b=242+(−1)2+−(14)2=773.
So, a unit vector perpendicular to both aandbisn^=773124−1−14.
Example 15. Given that∣a∣=4,b=5and thataandbare perpendicular, evaluate(2a−b)×(a+3b).Solution(2a−b)×(a+3b)=2a×a+2a×3b−b×a−b×3b=2(a×a)+6(a×b)−(b×a)−3(b×b)=6(a×b)−(b×a)=6(a×b)+(a×b)=7(a×b).(2a−b)×(a+3b)=7a×b=7∣a∣b=140.
Exercise 4.3
1. Find a vector perpendicular to the following pair of vectors: (a)311and123(b)3−14and−115Solution a×b=x1y1z1×x2y2z2=y1z2−z1y2z1x2−x1z2x1y2−y1x2(a)Leta=311,b=123The required vector=a×b=311×123=1×3−1×21×1−3×33×2−1×1=3−21−96−1=1−85
3. Prove that for any two vectorsaandb,a×b2+(a⋅b)2=∣a∣2b2.Solution Leta=(x1y1z1)andb=(x2y2z2)a×b=(x1y1z1)×(x2y2z2)=(y1z2−y2z1z1x2−z2x1x1y2−x2y1)∣a×b∣2=(y1z2−y2z1)2+(z1x2−z2x1)2+(x1y2−x2y1)2=(y1z2)2−2y1z2y2z1+(y2z1)2+(z1x2)2−2z1x2z2x1+(z2x1)2+(x1y2)2−2x1y2x2y1+(x2y1)2=(y1z2)2−2y1y2z1z2+(y2z1)2+(z1x2)2−2x1x2z1z2+(z2x1)2+(x1y2)2−2x1x2y1y2+(x2y1)2 a⋅b=x1x2+y1y2+z1z2(a⋅b)2=(x1x2+y1y2+z1z2)(x1x2+y1y2+z1z2)=x1x2⋅x1x2+x1x2⋅y1y2+x1x2⋅z1z2+y1y2⋅x1x2+y1y2⋅y1y2+y1y2⋅z1z2+z1z2⋅x1x2+z1z2⋅y1y2+z1z2⋅z1z2=(x1x2)2+x1x2y1y2+z1z2x1x2+x1x2y1y2+(y1y2)2+y1y2z1z2+z1z2x1x2+y1y2z1z2+(z1z2)2=(x1x2)2+2x1x2y1y2+(y1y2)2+2y1y2z1z2+(z1z2)2+2z1z2x1x2 ∣a×b∣2+(a⋅b)2=(y1z2)2+(y2z1)2+(z1x2)2+(z2x1)2+(x1y2)2+(x2y1)2+(x1x2)2+(y1y2)2+(z1z2)2 ∣a∣2∣b∣2=(x12+y12+z12)(x22+y22+z22)=x12x22+x12y22+x12z22+y12x22+y12y22+y12z22+z12x22+z12y22+z12z22=(x1x2)2+(x1y2)2+(x1z2)2+(x2y1)2+(y1y2)2+(y1z2)2+(z1x2)2+(z1y2)2+(z1z2)2∴∣a×b∣2+(a⋅b)2=∣a∣2∣b∣2
4. Given points A, B and C with coordinates (3, -5, 1), (7, 7, 2) and (-1, -1- 3). (a) Calculatep=AB×ACandq=BA×BC.(b) What can you say about vectorspandq?Solution A(3, -5, 1), B(7, 7, 2), C(-1, 1, 3). (a)AB=AO+OB=OB−OA772−3−51=4121AC=AO+OC=OC−OA−113−3−51=−462p=AB×AC=4121×−462 =12×2−6×11×(−4)−2×44×6−(−4)×12=24−6−4−824+48=18−1272BC=BO+OC=OC−OB=−113−772=−8−61BA=−AB=−4121=−4−12−1 q=BA×BC=−4−12−1×−8−61 =−12×1−(−6)×(−1)−1×(−8)−1×(−4)−4×(−6)−(−8)×(−12)=−12−68+424−96=−1812−72=−p
(b) p = q pandqare parallel and opposite direction.
5. The points A(3, 1, 2), B(-1, 1, 5) and C(7, 2, 3) are vectors of parallelogram ABCD.
(a) Find the coordinates of D.
(b) Calculate the area of parallelogram. Solution ABCD is a parallelogram. ∴AB=DCAO+OB=DO+OCOB−OA=OC−OD−115−312=723−xyz−403=7−x2−y3−z