4.3 Area of a Parallelogram and Vector Product
The vector product is only defined when both vectors are three-dimensional. The vector product ( or cross product) of
$$\vec{a} = \begin{pmatrix}x_1\\y_1\\z_1\end{pmatrix} \,\, \text{and} \,\, \vec{b} = \begin{pmatrix} x_2\\y_2\\z_2 \end{pmatrix}\, ,
\,\, \text{is given by}$$
$$\vec{a} \times \vec{b} = \begin{pmatrix}x_1\\y_1\\z_1\end{pmatrix} \times \begin{pmatrix}x_2\\y_2\\z_2\end{pmatrix}$$
$$= \begin{pmatrix}y_1z_2 - z_1y_2 \\ z_1x_2 - x_1z_2 \\ x_1y_2 - y_1x_2 \end{pmatrix}$$
Instead of memorizing the formula for the vector product try using the following shortcut.
(1) Eliminate the component column that you are trying to calculate.
(2) Calculate: Down product - Up Product.
$$\text{The direction of} \,\, \vec{a} \times \vec{b} \,\, \text{is perpendicular to both} $$
$$ \vec{a} \,\, \text{and} \,\, \vec{b}
\,\, \text{as shown in the diagram.}$$
$$\text{We have known that the nonzero vectors} $$
$$ \vec{a} \,\, \text{and} \,\, \vec{b} \,\, \text{are perpendicular if} \,\,
\vec{a} \cdot \vec{b} = 0.$$
$$\text{We will examine:} \,\,\, (\vec{a} \times \vec{b}) \cdot \vec{a}.$$
$$\text{Let} \,\, \vec{a} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}\,\, \text{and} \,\, \vec{b} = \begin{pmatrix} x_2 \\
y_2 \\ z_2 \end{pmatrix}.$$
Then
$$(\vec{a} \times \vec{b})\cdot \vec{a} = \begin{pmatrix}y_1z_2 - z_1y_2 \\ z_1x_2 - x_1z_2 \\ x_1y_2 - y_1x_2 \end{pmatrix}\cdot
\begin{pmatrix}x_1 \\ y_1\\ z_1 \end{pmatrix}$$
$$= (y_1z_2 - z_1y_2)x_1 + (z_1x_2 - x_1z_2)y_1 + (x_1y_2 - y_1x_2)z_1$$
$$= x_1y_1z_2 - x_1y_2z_1 + x_2y_1z_1 - x_1y_1z_2 + x_1y_2z_1 - x_2y_1z_1$$
$$=0$$
$$\text{Therefore} \,\, \vec{a} \times \vec{a} \,\, \text{is perpendicular to} \,\, \vec{a}.$$
$$\text{Similarly, we can show that} \,\, \vec{a} \times \vec{a} \,\, \text{is also perpendicular to}\,\, \vec{b}.$$
$$\text{The vector product of} \,\, \vec{a} = \begin{pmatrix}x_1\\y_1\\z_1 \end{pmatrix} \,\, \text{and} \,\, \vec{b} =
\begin{pmatrix} x_2\\y_2\\z_2 \end{pmatrix}\, , $$
$$ \text{has magnitude}\,\, \left|\vec{a}\right| \left|\vec{b}\right| \,\, \text{sin} \, \theta ,$$
$$\text{where} \,\, \theta \,\, \text{is the angle between}\,\, \vec{a} \,\, \text{and} \,\, \vec{b}.$$
Area of a Parallelogram
Consider the parallelogram OACB lying on the plane, with the vectors
$$\vec{a} \,\, \text{and} \,\, \vec{b}$$
as shown in the diagram. Then the area of OACB is given by
$$OA \,\, \left|\vec{b}\right| \,\, \text{sin}\, \theta = \left|\vec{a}\right| (\left|\vec{b}\right| \,\, \text{sin}\, \theta)$$
$$= \left| \vec{a} \times \vec{b}\right|,$$
i.e., the area of the parallelogram with sides defined by vectors
$$\overrightarrow{OA} = \vec{a} = \begin{pmatrix}x_1\\y_1\\z_1 \end{pmatrix} \,\, \text{and}$$
$$\overrightarrow{OB} = \vec{b} = \begin{pmatrix}x_2\\y_2\\z_2 \end{pmatrix}$$
is equal to the magnitude of the vector
$$\vec{a} \times \vec{b} .$$
Consequently,
$$\alpha (\triangle ACB) = \dfrac{1}{2} (\alpha (OACB)) $$
$$= \dfrac{1}{2} \left|\vec{a} \times \vec{b}\right|.$$
Algebraic Properties of the Vector Product
$$\text{If} \,\, \vec{a}, \, \vec{b}\,\, \text{and} \,\, \vec{c} \,\, \text{are vectors in space and}$$
$$ k\,\, \text{is a scalar, then}$$
$$1. \,\, \vec{a} \times \vec{b} = - (\vec{b} \times \vec{a}),$$
$$2. \,\, (k\vec{a}) \times \vec{b} = k(\vec{a} \times \vec{b}),$$
$$3. \,\, \vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}),$$
$$4. \,\, \vec{a} \times \vec{0} = \vec{0}.$$
Geometric Properties of the Vector Product
$$1.\,\, \text{If two nonzero vectors}\,\, \vec{a} \,\, \text{and} \,\, \vec{b}$$
$$\text{are \textbf{parallel}, then} \,\, \vec{a} \times \vec{b} = \vec{0}.$$
$$\text{In particular,} \,\, \vec{a} \times \vec{a} = \vec{0}.$$
$$\text{2. \,\,If two nonzero vectors} \,\, \vec{a} \,\, \text{and} \,\, \vec{b}$$
are perpendicular, then
$$\left|\vec{a} \times \vec{b}\right| = \left|\vec{a}\right| \left|\vec{b}\right|.$$
Exercise 4.3
1. Find a vector perpendicular to the following pair of vectors:
$$\text{(a)} \,\, \begin{pmatrix}3\\1\\1\end{pmatrix} \,\, \text{and} \,\, \begin{pmatrix}1\\2\\3 \end{pmatrix}$$
$$\text{(b)} \,\, \begin{pmatrix}3\\-1\\4\end{pmatrix} \,\, \text{and} \,\, \begin{pmatrix}-1\\1\\5\end{pmatrix}$$
Solution
$$\vec{a} \times \vec{b} = \begin{pmatrix}x_1\\y_1\\z_1\end{pmatrix}\times\begin{pmatrix}x_2\\y_2\\z_2\end{pmatrix} =
\begin{pmatrix}y_1z_2 - z_1y_2 \\ z_1x_2 - x_1z_2 \\ x_1y_2 - y_1x_2 \end{pmatrix}$$
$$(a) \,\,\text{Let} \,\, \vec{a} = \begin{pmatrix}3\\1\\1\end{pmatrix}, \,\, \vec{b} = \begin{pmatrix}1\\2\\3\end{pmatrix}$$
$$\text{The required vector} = \vec{a}\times\vec{b}$$
$$= \begin{pmatrix}3\\1\\1\end{pmatrix} \times \begin{pmatrix}1\\2\\3\end{pmatrix}
= \begin{pmatrix}1\times3 \,\, - \,\, 1\times 2\\ 1\times 1 \,\, - \,\, 3\times 3\\ 3\times 2 \,\, - \,\, 1\times 1 \end{pmatrix}$$
$$= \begin{pmatrix}3-2\\1-9\\6-1\end{pmatrix} = \begin{pmatrix}1\\-8\\5\end{pmatrix}$$
$$\text{(b)\,\, Let} \,\, \vec{a} = \begin{pmatrix}3\\-1\\4\end{pmatrix} \,\, \text{and} \,\, \vec{b} = \begin{pmatrix}-1\\1\\5\end{pmatrix}$$
$$= \begin{pmatrix}3\\-1\\4\end{pmatrix}\times \begin{pmatrix}-1\\1\\5\end{pmatrix}$$
$$= \begin{pmatrix}-1\times 5 \quad - \quad 4\times 1\\ 4\times (-1) \quad - \quad 3\times 5\\ 3\times 1 \quad - \quad (-1)\times (-1)\end{pmatrix}$$
$$= \begin{pmatrix}-5 - 4\\-4 - 15\\ 3 - 1\end{pmatrix} = \begin{pmatrix}-9\\-19\\2\end{pmatrix}$$