π⁄2) = cos x,
$$y = \text{sin}\, x \xrightarrow[- \dfrac{\pi}{2} \, \text{units}] {\text{horizontal translation}} \, y = \text{cos}\, x $$
Graph of the Cosine Function y = a cos bx, a > 0, b > 0
From the graph of y = cos x, the graph of y = a cos bx can be obtained as
$$\scriptsize{y = a \, \text{sin}\, bx\, \xrightarrow[\text{horizontal scaling, scale factor}\, \tiny{\dfrac{1}{b}}] {\text{vertical scaling, scale factor}\, a} \, y = a
\, \text{cos}\, bx}$$
$$\scriptsize{(x,y) \rarr \, (\dfrac{x}{b}, ay) }$$
$$\scriptsize{ \text{Five key points:} \begin{cases}x\text{-intercepts:} (\dfrac{\pi}{2b},0), (\dfrac{3\pi}{2b} , 0)\\ \text{maximum point:} (0,a),
(\dfrac{2\pi}{b}, a) \quad \text{minimum point:} (\dfrac{\pi}{b},-a) \end{cases} } $$
Graph of the Cosine Function y = -a cos bx, a > 0, b > 0
$$y = a\, \text{cos}\, bx\, \xrightarrow{\text{Reflection on the}\, x\text{-axis}}\, y = -a\, \text{cos}\, bx $$
Example 5.
Draw the graphs of y =
1⁄2 cos 2x and y = -
1⁄2 cos 2x
Solution
Note that y = a cos (-b)x = a cos bx, so no need to consider b < 0.
Graph of the Cosine Function y = a cos b(x - h) + k , a > 0, b > 0
$$\small{y = a \, \text{cos}\, bx\, \xrightarrow[\text{vertical translation}\, k\, \text{units}] {\text{horizontal translation}\, h\, \text{units}} \, y}$$
$$\small{= a \, \text{cos} \, b(x - h) + k }$$
y = cos x → y = a cos bx → y = a cos b(x - h) + k
(x, y) → (x⁄b, ay) → (
x⁄b + h, ay + k)