Chapter 7

7.5 Differentiation of Trigonometric Functions

Before you study the differentiation of trigonometric functions, we first evaluate an important limit, $$\small{\lim_{x\to 0} \frac{sin\, x}{x}.} $$

Consider the unit circle in the following figure with radii OA and OB with OA = OB = 1 and ∠AOB = x radians.
Obviously, BD < arc AB < AC. In right ▵OBD, BD = OB sin x = sin x.

fig 7.5-1

In ∆OAC, AC = OA tan x = tan x.
Length of arc AB = OBx = x, we have
sin x < x < tan x
sin xsin x < xsin x < tan xsin x 1 < xsin x < 1cos x
1 > sin xx > cos x

When x → 0, cos x → 1.
$$\small{ \text{Since}\, \lim_{x\to 0}1 = 1 \, \text{and} \, \lim_{x\to0}\, cos \, x\, = \, 1, } $$ $$\small{ \lim_{x\to0} \frac{sin \, x}{x} = 1 } $$ Derivative of sin x
Let y = sin x.
y + δy = sin(x + δx)
∴ δy = sin(x + δx) - sin x
= 2 cos(x + δx2) ⋅ sin δx2       (sin α - sin β = 2cos α + β2 ⋅ sin α - β2)
$$\small{ \frac{dy}{dx} = \lim_{\delta x\to0} \frac{\delta y}{\delta x} } $$ $$\small{ = \lim_{\delta x\to0} \frac{2 \text{cos}(x + \frac{\delta x}{2})\, \sdot\, \text{sin} \frac{\delta x}{2}} {\delta x} }$$ $$\small{= \lim_{\delta x\to0} \text{cos}(x + \frac{\delta x}{2})\, \sdot\, \lim_{\delta x\to0} \frac{\text{sin} \frac{\delta x}{2}}{\frac{\delta x}{2}} }$$ = cos x × 1       (when δx→ 0, δx2 → 0)
ddx sin x = cos x
In general,
ddx sin u(x) = cos u(x) ⋅ ddx u(x).

Derivative of cos x
Since cos x = sin(π2 + x)
ddx cos x = ddx sin(π2 + x)
= cos(π2 + x) ⋅ ddx(π2 + x)
= - sin x × 1       (∵ cos(π2 + x) = - sin x)
ddx cos x = - sin x
In general,
ddx cos u(x) = - sin u(x) ⋅ ddx u(x).

Derivative of tan x
Since tan x = sin xcos x
ddx tan x = ddx sin xcos x
= cos x ddx sin x - sin x ddx cos x cos2 x
= cos x ⋅ cos x - sin x ⋅ (- sin x)cos2x       (quotient formula)
cos2 x + sin2 xcos2 x
= 1 cos2 x       (cos2 x + sin2 x = 1)
= sec2 x       (sec x = 1 cos x)
ddx tan x = sec2 x
In general,
ddx tan u(x) = sec2 u(x) ⋅ ddx u(x).
Similarly, we can easily find the formulas for the derivatives of cos x, sec x and csc x.

Formulas for derivatives of trigonometric functions
1 ddx sin (x) = cos x , ddx sin u(x) = cos u(x). ddx u(x).
2 ddx cos (x) = -sin x , ddx cos u(x) = -sin u(x). ddx u(x).
3 ddx tan (x) = sec2 x , ddx tan u(x) = sec2 u(x). ddx u(x).
4 ddx cot (x) = -cosec2 x , ddx cot u(x) = -cosec2 u(x). ddx u(x).
5 ddx sec (x) = sec x. tan x , ddx sec u(x) = sec u(x). tan u(x). ddx u(x).
  6   ddx csc (x) = -csc x. cot x , ddx csc u(x) = -csc u(x). cot u(x). ddx u(x).
Example 9.
Differentiate the following functions with respect to x.
(a) sin 5x
(b) cos (7x2 - 2)
(c) tan(6x + 7)
(d) 5 sec(3x + 1)
(e) cot(1 - 2x)3
(f) -2 csc 3x
Solution
(a) ddx sin 5x = cos 5xddx 5x
= cos 5x ⋅ 5 = 5 cos 5x

(b) ddx cos (7x2 - 2) = - sin(7x2 - 2) ⋅ ddx (7x2 - 2)
= - sin (7x2 - 2) ⋅ 14x

(c) ddx tan(6x + 7) = sec2(6x + 7) ⋅ ddx (6x + 7)
= sec2 (6x + 7) ⋅ 6

(d) ddx 5 sec(3x + 1) = 5⋅ sec(3x + 1) ⋅ tan(3x + 1) ⋅ ddx (3x + 1)
= 5⋅ sec(3x + 1) ⋅ tan(3x + 1) ⋅ 3
= 15 ⋅ sec(3x + 1) ⋅ tan(3x + 1)

(e) ddx cot(1 - 2x)3 = 13ddx cot(1 - 2x)
= 13 ⋅ - csc2(1 - 2x) ⋅ ddx (1 - 2x)
= - 13 ⋅ csc2(1 - 2x) ⋅ (-2)
= 23 ⋅ csc2(1 - 2x)

(f) ddx (-2 csc 3x) = -2 (-csc 3x ⋅ cot 3x)ddx 3x
= 2 csc 3x ⋅ 3x ⋅ 3
= 6 csc 3x ⋅ cot 3x

Example 10.
Find dydx.
(a) y = sin2 x
(b) y = cos √ x
(c) y = tan2 (x2)
(d) y = sin 2x - x cos x
(e) y = sin x ⋅ cos2 x
(f) y = x tan x
(g) y = √ x + 10x

Solution
(a) y = sin2 x
dydx = ddx sin2x
= 2 sin x ddx sin x
= 2 sin x cos x

(b) y = cos √ x
dydx = ddx cos √ x
= - sin √ x ddx x12
= - sin √ x 12 x ( 12 - 1)
= - sin √ x 12 x( - 12)

(c) y = tan2 (x2)
dydx = 2 tan (x2) ddx tan (x2)
= 2 tan (x2).sec2 (x2) dydx x2
= 2 tan (x2).sec2 (x2).2x

(d) y = sin 2x - x cos x
dydx = cos 2x. ddx 2x - [x.ddx cos x + cos x dxdx ]
= 2 cos 2x - [x (-sin x) + cos x.1]
= 2 cos 2x + x sin x - cos x
(e) y = sin x.cos2 x dydx
= sin x. ddx (cos2 x) + cos2 x. ddx (sin x)
= sin x.2 cos x. ddx (cos x) + cos2 x.cos x
= sin x. 2 cos x.(-sin x) + cos2 x. cos x
= -2 sin2 x.cos x + cos3 x
(f) y = x3 tan x dydx
= tan x. dxdx - x. ddx tan x (tan x)2
= tan x.1 - x sec2 x tan2 x
= tan x - x sec2 x tan2 x

(g) y = √ x + sin x = (x + sin x)1/2 dydx
= 12 (x + sin x)-1/2 . ddx (x + sin x)
= 12 (x + sin x)-1/2 . (1 + cos x)
= 1 + cos x 2 √ x + sin x

Example 11.
Given that x + sin y = cos(xy) , find dydx .
Solution
x + sin y = cos(xy) , find dydx .
Differentiate with respect to x,
1 + cos ydydx = -sin xyddx (xy)
1 + cos y. dydx = - sin (xy). [x. dydx + y]
1 + cos y. dydx = -x sin (xy). dydx - y sin (xy)
x sin (xy). dydx + cos y. dydx = -y sin xy - 1
(x sin (xy) + cos y). dydx = -y sin xy -1
dydx = -y sin xy -1 x sin (xy) + cos y
dydx = - 1 + y sin xy cos y + x sin (xy)

Example 4.
Given that y = x sin x, find d2y dx2.
Solution
y = x sin x
dydx = x ddx sin x + sin x.
dxdx = x.cos x + sin x
d2y dx2 = (x⋅ddx cos x + cos x ⋅ dxdx ) + ddx sin x
= x (-sin x) + cos x + cos x
= 2 cos x - x sin x

Exercise 7.5
1. Differentiate the following function with respect to x.
(a)   sin (2x + 3),
(b)  cos 3x
(c)  x3 cos 2x ,
(d)  cos 7x + sin 3x
(e)   sin x.cos 2x,
(f)   cos2 (5x)
(g)  tan3 x ,
(h)  sin (cos x)
(i)  sin x 1 + tan x ,
(j)  √ sin x + cos x

Solution
(a)   ddx sin (2x + 3) = cos (2x + 3) ddx (2x + 3)
= cos (2x + 3) ⋅ 2
= 2 cos (2x + 3)

(b)  ddx cos 3x = - sin 3x ddx 3x-1
= - sin 3x ⋅ (-3) x-2
= sin 3x3x2

(c)  ddx (x3 cos 2x) = x3ddx cos 2x + cos 2x ddx x3
= x3 (- sin 2x) ddx 2x + cos 2x ⋅ 3x2
= x3 (- sin 2x) ⋅ 2 + 3x2 ⋅ cos 2x

(d)  ddx (cos 7x + sin 3x) = ddx cos 7x + ddx sin 3x
= - sin 7x ddx 7x + cos 3x ddx 3x
= -7 sin 7x + 3 cos 3x

(e)   ddx sin x.cos 2x = sin x ddx cos 2x + cos 2x ddx sin x
= sin x (-sin 2x) ddx 2x + cos 2x ⋅ cos x
= sin x (-2 sin 2x) + cos 2x ⋅ cos x

(f)   ddx cos2 (5x) = ddx (cos 5x)2
= 2 (cos 5x) ddx cos 5x
= 2 cos 5x ⋅ (-sin 5x) ddx 5x
= - 2 cos 5x ⋅ sin 5x ⋅ 5
= -10 cos 5x ⋅ sin 5x

(g)  ddx tan3 x = ddx (tan √ x ) 3
= 3 (tan √ x )2 ddx tan √ x
= 3 (tan √ x )2 sec2 x ddx x 12
= 3 (tan √ x )2 ⋅ sec2 x 12 x - 12
= 3 tan2 x ⋅ sec2 x 12 √ x

(h)  ddx sin (cos x) = cos (cos x) ddx cos x
= cos (cos x) ⋅ (-sin x)

(i)  ddx sin x 1 + tan x
= 1 + tan xddx sin x - sin x ddx (1 + tan x)(1 + 10x)2
= 1 + tan x ⋅ cos x - sin x ⋅ sec2 x (1 + 10x)2

(j)  ddx sin x + cos x = ddx (sin x + cos x) 12
= 12 (sin x + cos x) - 12 ddx (sin x + cos x)
= 12 cos x - sin x sin x + cos x

2. Find dydx.
(a) y = sin (1 - x2) ,
(b) y = 2 π x + 2 cos π x.
(c) y = sin2 x . cos 3x ,
(d) y = x2 sin( 1x)
(e) 3x2 + 2 sin y = y2 ,
(f) sin x . cos y = 2y.

Solution
(a) y = sin (1 - x2)
dydx = cos (1 - x2) ⋅ ddx (1 - x2)
= cos (1 - x2) ⋅ (-2x)
= -2x ⋅ cos (1 - x2)

(b) y = 2 π x + 2 cos π x
dydx = ddxx + ddx 2 cos π x
= (2π ddx x + xddx 2π) + (-2 sin πxdydx πx)
= (2π + x⋅0) + (-2 sin πx ⋅ π)
= 2π - 2π ⋅ sin πx

(c) y = sin2 x . cos 3x
dydx = sin2 xddx cos 3x + cos 3xddx sin2 x
= sin2 x ⋅ (-sin 3xddx 3x) + cos 3x ⋅ 2 sin xdydx sin x
= sin2 x ⋅ (-sin 3x ⋅ 3) + cos 3x ⋅ 2 sin x ⋅ cos x

(d) y = x2 sin( 1x)
dydx = x2ddx sin (1x) + sin 1xddx x2
= x2 ⋅ cos (1x) ⋅ ddx x-1 + sin 1x ⋅ 2x
= x2 ⋅ cos (1x) ⋅ (-x-2) + sin 1x ⋅ 2x
= x2⋅ cos (1x) ⋅ (- 1x2) + 2x ⋅ sin (1x)
= -cos (1x) + 2x ⋅ sin (1x)

(e) 3x2 + 2 sin y = y2
Differentiate both sides with respect to x
3 ddx x2 + 2 ddx sin y = ddx y2
3 ⋅ 2x + 2 cos y dydx = 2y dydx
3 ⋅ 2x = 2y dydx - 2 cos y dydx
6x = (2y - 2 cos y) dydx
6x (2y - 2 cos y) = dydx
2 ⋅ 3x 2 (y - cos y) = dydx
dydx = 3xy - cos y


(f) sin x . cos y = 2y
Differentiate both sides with respect to x
sin xddx cos y + cos yddx sin x = 2 dydx
sin x ⋅ (-sin y) ⋅ dydx + cos y ⋅ cos x = 2 dydx
- sin x ⋅ sin ydydx + cos y ⋅ cos x = 2 dydx
cos y ⋅ cos x = 2 dydx + sin x ⋅ sin ydydx
cos x ⋅ cos y = (2 + sin x ⋅ sin y) ⋅ dydx
cos x ⋅ cos y 2 + sin x ⋅ sin y = dydx
dydx = cos x ⋅ cos y2 + sin x ⋅ sin y

3. Given that y = cos2 x, prove that d2y dx2 + 4y = 2.
dydx = 2 cos xddx cos x
= 2 cos x (-sin x)
= -2 sin x cos x
= - sin 2x

d2ydx2 = ddx (-sin 2x)
= -cos 2xddx 2x
= -cos 2x ⋅ 2
= -2 cos 2x

d2ydx2 + 4 y = -2 cos 2x + 4 cos2x
= -2 (2 cos2 x - 1) + 4 cos2x
= -4 cos2 x + 2 + 4 cos2 x
= 2

4. Given that y = 13 cos3x - cos x, prove that dydx = sin3x.
Solution
dydx = 13 ddx cos3 x - ddx cos x
= 13 (3 cos2 x) ddx cos x - (-sin x)
= cos2 x (-sin x) + sin x
= sin x (-cos2 x + 1)
= sin x (1 - cos2 x)
= sin x (sin2 x)
= sin3 x