Trigonometric functions are not one-to-one functions. So we need to restrict the domain of each function to be a one-to-one function to get the inverse
trigonometric functions. The following graphs shows that y = sin x, y = cos x, and y = tan x are one-to-one in the
restricted domains.
In these restricted domains, we can define the inverse functions y = sin-1x, y = cos-1x and y =
tan-1x.
y = sin-1x if sin y = x for -1 ≤ x ≤ 1,
- π⁄2 ≤ y ≤
π⁄2
y = cos-1x if cos y = x for -1 ≤ x ≤ 1, 0 ≤ y ≤ π
y = tan-1x if tan y = x for x &belongto; R
We can define the other trigonometric functions in the same manner.
y = cot -1x if cot y = x for x ∈ R,
0 < y < π
y = sec-1x if sec y = x for |x| ≥ 1, 0 ≤ y ≤ π, y ≠
π⁄2
y = csc-1x if csc y = x for |x| ≥ 1,
- π⁄2 ≤ y ≤
π⁄2, y ≠ 0
Example 8.
Evaluate
(a) sin-11⁄2
(b) cos-1 -
(1⁄2)
$$\small{\text{(c) tan}^{-1} (-\sqrt{3})}$$
(d) sin-1
(sin 5π⁄6 ). Solution
(a) Since sin π⁄6 =
1⁄2 and
- π⁄2 ≤
π⁄6 ≤
π⁄2,
we have
sin-11⁄2 =
π⁄6.
(b) Since cos 2π⁄3 = - 1⁄2
and
0 ≤ 2π⁄3 ≤ π, we have
cos-1 (- 1⁄2) =
2π⁄3.
(c) Since tan(- π⁄3) = -
√
3
and π⁄2 ≤ - π⁄3 ≤
π⁄2, we have
tan-1
(- √ 3 ) =
- π⁄3.
(d) sin-1(sin 5π⁄6) = sin-1
(1⁄2)
= π⁄6.
From y = sin-1x if sin y = x, we have sin(sin-1x) = x
for the domain -1 ≤ x ≤ 1 of y = sin-1x, but from Example 8(d) one can see that
sin-1(sin x) = x is
not true in general. Since sin(-sin-1x) = -sin(sin-1x) = -1, we have
sin-1(-x) = -sin-1x
so y = sin-1x is an odd function.
From y = cos-1x if cos y = x, we have cos(cos-1x) = x
for the domain -1 ≤ x ≤ 1 of y = cos-1x. Since cos(π - cos-1x) = - cos(cos-1x)
= -x,
π - cos-1x = cos-1(-x)
or
cos-1x + cos-1(-x = π
Exercise 7.4
1. Evaluate (a) csc(sin-10.3) Solution
Let y = sin-1 0.3
( - π⁄2 ≤ y ≤
π⁄2 )
sin y = 0.3 = 3⁄10
csc(sin-1 0.3) = csc y = 1⁄sin y
= 10⁄3
(b) cot(tan-1 5) Solution
Let y = tan-1 5
( - π⁄2 < y <
π⁄2 )
tan y = 5
cot(tan-1 5) = cot y = 1⁄tan y
= 1⁄5 = 0.2
(c) sec(cos-1(-0.75)). Solution
Let y = cos-1 (-0.75)
(0 ≤ y ≤ π)
cos y = -0.75
cos y = - 75⁄100 = -
3⁄4
csc(cos-1 (-0.75)) = csc y
= 1⁄cos y = -
4⁄3
2. Evaluate (a) sin-1
√ 3 ⁄2 Solution
Let y = sin-1
√ 3 ⁄2( - π⁄2 ≤ y ≤
π⁄2 )
sin y =
√ 3 ⁄2 = sin
π⁄3 y = π⁄3
(b) cos-1
√ 2 ⁄2 Solution
Let y = cos-1
√ 2 ⁄2(0 ≤ y ≤ π)
cos y =
√ 2 ⁄2 = cos
π⁄4 y = π⁄4
(c) tan-1
√ 3 ⁄3 Solution
Let y = tan-1
√ 3 ⁄3( - π⁄2 < y <
π⁄2 )
tan y =
√ 3 ⁄3 = tan
π⁄6 y = π⁄6
5. Prove that sin-1x + cos-1x =
π⁄2 Solution
Let y = sin-1x( - π⁄2 ≤ y ≤
π⁄2 )
sin y = x
cos (π⁄2 - y) = x π⁄2 - y = cos-1x y + cos-1x = π⁄2
sin-1x + cos-1x =
π⁄2