A function of the form y = bx , where b > 0, b ≠ 1, is called an exponential function of x.
The graph y = 2x, y = 3x, y = 2-x, and 3-x are as follows.
Domain of y = bx : ℝ
Range: x > 0
Asymptote: x-axis (y = 0)
Note that y = logbx and y = bx are inverse of each other.
For b > 1, y = bx is an exponential growth function as the functions y = 2-x =
(1 ⁄2)x and y = 3-x =
(1 ⁄3)x
$$\small{y = b^x \xrightarrow[\text{on} \, y\text{-axis}] {\text{reflection}} \, y = b^{-x} }$$
From the graph of y = bx, the graph of y = abx , a > 0 can be obtained as
$$\small{y = b^x \xrightarrow[\text{scale factor} \,a] {\text{vertical scaling}} \, y = ab^{x} }$$
From the graph of y = abx, a > 0, the graph of y = abx - h + k can be obtained as
$$\small{y = ab^x \xrightarrow[\text{vertical translation} \, k\,\text{units}] {\text{horizontal translation}\, h\, \text{units}} \, y = ab^{x - h} + k }$$
Example 6.
Draw the graph of y = 1.5 ⋅ 2x-1 - 1 from y = 2x , and y = -2-(x+1) + 2 from y = -2-x. Solution
$$\small{y = 2^x \xrightarrow[\text{scale factor} \,1.5] {\text{vertical scaling}} \, y }$$
$$\small{ = 1.5 \sdot 2^x \xrightarrow[\text{vertical translation -1 unit}] {\text{horizontal translation 1 unit}} \, y }$$
= 1.5 ⋅ 2x-1 - 1
Example 7.
Points (0,1) and (1, b) are on the graph of y = bx . Find the corresponding points on the graphs of y = abx
and y = abx - h + k. What is the asymptote of y = abx-h + k ?
Find the range of y = abx-h + k if a > 0 and if a < 0. Solutiion
$$\small{y = b^x \xrightarrow[\text{scale factor} \,a] {\text{vertical scaling}} \, y }$$
$$\small{ = ab^x \xrightarrow[\text{vertical translation}\, k \, \text{units}] {\text{horizontal translation}\, h\, \text{units}} \, y }$$
= abx-h + k
$$\small{(0, 1) \xrightarrow[\text{scale factor} \,a] {\text{vertical scaling}}\, (0,a)
\xrightarrow[\text{vertical translation}\, k \, \text{units}] {\text{horizontal translation}}\, (h\,, a+k) }$$
$$\small{(1,b) \xrightarrow[\text{scale factor} \,a] {\text{vertical scaling}}\, (1,ab)
\xrightarrow[\text{vertical translation}\, k \, \text{units}] {\text{horizontal translation}}\, (1+h\,, ab+k) }$$
Asymptote of y =bx is y = 0 (x-axis) and asymptote of y = abx is also y = 0 (x-axis).
After vertical translation k units, asymptote of y = abx-h + k is y = k.
If k > 0, than
the range of y = abx-h + k is {y : y > k} that means all of y above the asymptote y = k.
If a < 0, then the range of y = abx-h + k is {y : y < k} that means all of y below the asymptote y = k.
Exercise 8.3
1. Draw the graph of
(a) y = 2 ⋅ 3x + 1 - 2 Solution
$$\small{y = 3^x \xrightarrow[\text{scale factor} \,2] {\text{vertical scaling}} \, y }$$
$$\small{ = 2 \sdot 3^x \xrightarrow[\text{vertical translation -2 units}] {\text{horizontal translation -1 unit}} \, y }$$
= 2 ⋅ 3x+1 -2