Chapter 8
8.4 Differentiation of Exponential Functions
Derivative of y = bx , b > 0, b ≠ 1
y = bx , b > 0, b ≠ 1
∴ x = logb y
Differentiate both sides with respect to x ,
1 = 1 ⁄ y logb e ⋅
dy ⁄ dx
dy ⁄ dx = y ⋅
1 ⁄ logb e = bx loge b =
bx ln b
Therefore
d ⁄ dx bx = bx ln b
Since ln e = 1,
d ⁄ dx ex = ex
and
d ⁄ dx eu (x ) = e u (x ) ⋅
d ⁄ dx u (x )
In general
d ⁄ dx b u (x ) = b u (x )
⋅ ln b ⋅ d ⁄ dx u (x )
Example 8.
Differentiate the following functions with respect to x .
(a) e 3x
(b) e 1-x 2
(c) e sin x
(d) x 2 e 3x
(e) e 2x sin 3x
(f) (ex + e -x )2
(g)
3e 2x ⁄ 1 - 2x
Solution
(a) e 3x
d ⁄ dx
e 3x = e 3x
d ⁄ dx 3x
= e 3x ⋅ 3
= 3 e 3x
(b) e 1-x 2
d ⁄ dx
e 1-x 2 = e 1-x 2
d ⁄ dx
(1 - x 2 )
= e 1-x 2 ⋅ (-2x)
= -2x ⋅ e 1-x 2
(c) e sin x
d ⁄ dx
e sin x = e sin x
d ⁄ dx sin x
= e sin x cos x
= cos x ⋅ e sin x
(d) x 2 e 3x
d ⁄ dx
x 2 e 3x = x 2
d ⁄ dx
e 3x + e 3x
d ⁄ dx
x 2
= x 2 ⋅ e 3x
d ⁄ dx 3x
+ e 3x ⋅ 2x
= x 2 ⋅ e 3x ⋅ 3 + e 3x ⋅ 2x
(e) e 2x sin 3x
d ⁄ dx
e 2x sin 3x = e 2x
d ⁄ dx
sin 3x + sin 3x
d ⁄ dx
e 2x
= e 2x ⋅ cos 3x
d ⁄ dx 3x + sin 3x ⋅
e 2x ⋅ d ⁄ dx 2x
= e 2x ⋅ cos 3x ⋅ 3
+ sin 3x ⋅ e 2x ⋅ 2
(f) (ex + e -x )2
d ⁄ dx
(ex + e -x )2 =
2(ex + e-x ).
d ⁄
dx
(ex + e-x )
= 2 (ex + e-x ).(
d ⁄
dx ex +
d ⁄
dx
e-x )
= 2 (ex + e-x ).(ex + e-x
d ⁄
dx -x )
=
2 (ex + e-x ).(ex + e-x
(-1) )
=
2 (ex + e-x ).(ex - e-x )
(g) 3.e2x ⁄
1-2x
d ⁄
dx
3.e2x ⁄
1-2x
= 3 .
d ⁄
dx
e2x ⁄
1-2x
= 3 .
(1 - 2x)
d ⁄
dx e2x
- e2x
d ⁄
dx (1 - 2x) ⁄
(1 - 2x)2
= 3 . (1 - 2x) e2x .
d ⁄
dx 2x
- e2x (-2) ⁄
(1 - 2x)2
=
3 . (1 - 2x) e2x . 2
+ 2e2x
⁄
(1 - 2x)2
= 3 . ( (1 - 2x).2 + 2) e2x
⁄ (1 - 2x)2
= 3 . (2 - 4x + 2) e2x
⁄ (1 - 2x)2
= 3 . (4 - 4x) e2x
⁄ (1 - 2x)2
Example 8.
Find
d ⁄ dx .
(a) y = e x ln x
(b) y = log10 ex 2
(c) y = log3 (sin x + e x )
(d) xey + ln (xy ) = sin x
Solution
(a) y = e x ln x
dy ⁄ dx
= e x d ⁄ dx ln x +
ln x d ⁄ dx ex
= ex ⋅ 1 ⁄ x + ln x ⋅ ex
(b) y = log10 ex 2 = x 2 log10 e
log10 e = 0.4342944819 ဖြစ်သည်။ တနည်းအားဖြင့် constant ပါ။
y = x2 log10 e
dy ⁄
dx
=
x 2
d ⁄
dx log10 e +
log10 e
d ⁄
dx x2
= x 2 . 0 + log10 e . 2x
= log10 e . 2x
(c) y = log3 (sin x + e x )
dy ⁄
dx
= 1 ⁄
(sin x + ex )
.log3 e
d ⁄
dx (sin x + ex )
= 1 ⁄
(sin x + ex )
.log3 e
(cos x + ex )
(d) xey + ln (xy ) = sin x
(x d ⁄
dx ey + ey
dx ⁄
dx ) +
d ⁄
dx
ln (xy ) = d ⁄
dx sin x
(x.ey .
dy ⁄
dx + ey .1) +
1 ⁄
xy .
d ⁄
dx (xy )
=
cos x
(x.ey .
dy ⁄
dx + ey ) +
1 ⁄
xy ⋅(x ⋅
dy ⁄
dx + y ⋅
dx ⁄
dx )
=
cos x
(x.ey ⋅
dy ⁄
dx + ey ) +
1 ⁄
xy ⋅(x ⋅
dy ⁄
dx + y ⋅1)
=
cos x
x.ey ⋅
dy ⁄
dx + ey +
1 ⁄
xy ⋅x
dy ⁄
dx +
1 ⁄
xy .y
=
cos x
x.ey ⋅
dy ⁄
dx + ey +
1 ⁄
y ⋅
dy ⁄
dx +
1 ⁄
x
=
cos x
x.ey ⋅
dy ⁄
dx +
1 ⁄
y .
dy ⁄
dx
=
cos x - ey -
1 ⁄
x
(x.ey +
1 ⁄
y )⋅
dy ⁄
dx
=
cos x - ey -
1 ⁄
x
dy ⁄
dx
=
cos x - ey -
1 ⁄
x
⁄
x.ey +
1 ⁄
y
Example 10.
Differentiate y = xx , x > 0.
Solution
y = xx
y = eln xx
y = ex ln x
dy ⁄ dx
= d ⁄ dx ex ln x
= ex ln x d ⁄ dx (x ln x )
= e x ln x (x ⋅ 1 ⁄ x + ln x ⋅ 1)
= xx (1 + ln x )
Exercise 8.4
1. Differentiate the following functions with respect to x
(a) (5 + 3x )e -2x
Solution
d ⁄ dx
(5 + 3x )e -2x = (5 + 3x ) d ⁄ dx
e -2x + e -2x
d ⁄ dx (5 + 3x )
= (5 + 3x ) e -2x d ⁄ dx (-2x ) +
e -2x ⋅ 3
= (5 + 3x ) e -2x ⋅ (-2) +
e -2x ⋅ 3
(b) 3x x 3
တွက်ပုံ
3x ကိုအရင်စဉ်းစားပါမည်။
y = 3x ဖြစ်ပါစေ
နှစ်ဖက်စလုံးကို ln မြှောက်သော်
ln y = ln 3x
ln y = x ln 3 (logb Mk = k logb M
နှင့်သဘောတရားတူသည်)
နှစ်ဖက်စလုံးကို x အလိုက် differentiate လုပ်သော်
d ⁄
dx ln y =
d ⁄
dx x ⋅ ln 3
d ⁄
dx ln y = x d ⁄
dx ln 3 + ln 3 ⋅
dx ⁄
dx
1 ⁄
y
dy ⁄
dx = x.0 + ln 3.1
1 ⁄
y .
dy ⁄
dx = 0 + ln 3
dy ⁄
dx = y ln 3
dy ⁄
dx = 3x ln 3
∴ d ⁄
dx 3x = 3x ln 3
Solution
3x . x3
d ⁄
dx 3x ⋅ x3 = 3x
d ⁄
dx x3 + x3
d ⁄
dx 3x
= 3x .3x2 + x3 ⋅ 3x ln 3
(အပေါ်က အဖြေကိုတန်းထည့်ပါသည်)
= 3x ⋅3x2 + x2 ⋅x ⋅ 3x ln 3
= 3x ⋅x2 (3 + x ln 3)
(c) 2x log2 x
d ⁄ dx
2x log2 x = 2x
d ⁄ dx log2 x + log2 x
d ⁄ dx 2x
= 2x ⋅ 1 ⁄ x log2 e +
log2 x ⋅ 2x ln 2
(d) 10x log10 (x + 1)
d ⁄ dx
10x log10 (x + 1) = 10x d ⁄ dx
log10 (x + 1) + log10 (x + 1)
d ⁄ dx 10x
= 10x ⋅ 1 ⁄ x +1 log10 e +
log10 (x +1) ⋅ 10x ln 10
(e) x 2 + tan 3x ⁄ ex
d ⁄ dx
x 2 + tan 3x ⁄ ex =
ex d ⁄ dx (x 2 +
tan 3x ) - (x 2 + tan 3x ) d ⁄ dx
ex
⁄ (ex )2
= ex (2x + sce2 3x
d ⁄ dx 3x ) - (x 2 + tan 3x ) ⋅ ex
⁄ e 2x
= ex (2x + sec2 3x ⋅ 3) - (x 2 + tan 3x ) ⋅ ex
⁄ e 2x
(f) x ln y + exy = 2
d ⁄ dx x ln y +
d ⁄ dx exy =
d ⁄ dx 2
(x d ⁄ dx ln y + ln y
d ⁄ dx x ) + exy
d ⁄ dx xy = 0
(x ⋅ 1 ⁄ y
dy ⁄ dx + ln y ⋅ 1) + exy (x
d ⁄ dx y + y
d ⁄ dx x ) = 0
(x ⁄ y
dy ⁄ dx + ln y ) + exy (x ⋅
dy ⁄ dx + y ⋅ 1) = 0
x ⁄ y
dy ⁄ dx + ln y + x ⋅exy
dy ⁄ dx + y ⋅ exy = 0
x ⁄ y
dy ⁄ dx + x ⋅exy
dy ⁄ dx =
- ln y - y ⋅ exy
dy ⁄ dx
(x ⁄ y
+ x ⋅exy ) =
- ln y - y ⋅ exy
dy ⁄ dx =
- ln y - y ⋅ exy ⁄
x ⁄ y + x ⋅exy
2. Given that y = e 3x sin 2x , prove that
d 2 y ⁄ dx 2 - 6
dy ⁄ dx + 13y = 0
Solution
dy ⁄ dx =
e 3x d ⁄ dx sin 2x + sin 2x
d ⁄ dx e 3x
= e 3x cos 2x d ⁄ dx 2x + sin 2x
⋅ e 3x dy ⁄ dx 3x
= e 3x ⋅ cos 2x ⋅ 2 + sin 2x ⋅ e 3x ⋅ 3
= 2 ⋅ e 3x ⋅ cos 2x + 3 ⋅ e 3x sin 2x
= 2 ⋅ e 3x ⋅ cos 2x + 3y
d 2 y ⁄ dx 2
= 2[e 3x ⋅ d ⁄ dx cos 2x + cos 2x ⋅
d ⁄ dx e 3x ] + 3
dy ⁄ dx
= 2[e 3x (-sin 2x ) ⋅ d ⁄ dx 2x +
cos 2x ⋅ e 3x ⋅ d ⁄ dx 3x ] + 3
dy ⁄ dx
= 2[e 3x (-sin 2x ) ⋅ 2 + cos 2x ⋅ e 3x ⋅ 3] + 3
dy ⁄ dx
= -4 e 3x sin 2x + 6e 3x cos 2x + 3(2e 3x cos 2x + 3y )
= -4y + 6e 3x cos 2x + 6e 3x cos 2x + 9y
= 12 e 3x cos 2x + 5y
d 2 y ⁄ d x 2 - 6
dy ⁄ dx + 13y =
12 e 3x cos 2x + 5y - 6 (2 ⋅ e 3x ⋅ cos 2x + 3y ) + 13y
= 12 e 3x cos 2x + 5y - 12 e 3x cos 2x - 18y + 13y
= 0
3. Use logarithmic differentiation to find the derivative of y with respect to x .
$$ \small{\text{(a)} \,\, y = (\sqrt{x})^x } $$
Solution
$$ \small{y = (\sqrt{x})^x} $$
$$ \small{ln \, y = ln \, (\sqrt{x})^x} $$
$$ \small{ = x \, ln \, (\sqrt{x}) } $$
$$ \small{ = x \, \frac{1}{2} \, ln \, x} $$
$$ \small{\frac{d}{dx}\, ln \, y = \frac{d}{dx}\, x\, \frac{1}{2} \, ln \, x} $$
$$ \small{\frac{1}{y} \, \frac{dy}{dx}\, = \frac{1}{2} [x \sdot \frac{d}{dx}\,ln \, x\, + ln \, x \, \frac{d}{dx} \, x]} $$
$$ \small{\frac{1}{y} \, \frac{dy}{dx}\, = \frac{1}{2} [x \sdot \frac{1}{x}\, + ln \, x \, \sdot 1 ]} $$
$$ \small{ = \frac{1}{2} [1\, + ln \, x]} $$
$$ \small{\frac{dy}{dx} = \frac{1}{2} \, y [1\, + ln \, x]} $$
$$ \small{ = \frac{1}{2} \, (\sqrt{x})^x \, (1\, + ln \, x)} $$
(b) y = x cos x
ln y = ln x cos x
= cos x ln x
d ⁄ dx ln y =
d ⁄ dx cos x ln x
1 ⁄ y dy ⁄ dx = cos x
d ⁄ dx ln x + ln x
d ⁄ dx cos x
1 ⁄ y dy ⁄ dx
= cos x ⋅ 1 ⁄ x + ln x (-sin x )
dy ⁄ dx = y (
cos x ⁄ x - sin x ⋅ ln x )
= x cos x (cos x ⁄ x - sin x ⋅ ln x )
(c) y = (ln x )ln x
ln y = ln (ln x )ln x
= ln x ⋅ ln (ln x )
d ⁄ dx ln y =
d ⁄ dx [ln x ⋅ ln (ln x )]
1 ⁄ y
d ⁄ dx =
ln x ⋅ d ⁄ dx ln (ln x ) + ln (ln x )
d ⁄ dx ln x
= ln x ⋅ 1 ⁄ ln x ⋅
d ⁄ dx ln x + ln (ln x ) ⋅
1 ⁄ x
dy ⁄ dx = y (
1 ⁄ x +
ln (ln x ) ⁄ x )
= (ln x )ln x ⋅
1 + ln (ln x ) ⁄ x
«
Previous
Next »