Consider
f ' (x) = 3x2.
The natural question aries, what is the function f (x) ? Namely, what is f in terms of x? We know that differentiation decreases
the power by 1, so f must contain x3.
If f (x) =- x3, then f ' (x) = 3x2, or
If f (x) = x2 + 2, then f ' (x) = 3x2, or
If f (x) = x3 - 1⁄2,
then f ' (x) = 3x2, etc.
It means that there are many such functions of the form
f (x) = x3 + C
shere C is an arbitrary constant.
We say that
x3 is the antiderivative of 3x2.
Next consider
f ' (x) = x.
we think the same way as above, the original function f must contain x2. However,
d⁄dx = x2 = 2x,
we see the extra factor 2. If we multiply both sides by
1⁄2, then
d⁄dx (
1⁄2 x2) = x.
If f (x) = 1⁄2 x2 + C where C is an arbitrary
constant, then f ' (x) = x, so 1⁄2 x2 is the
antiderivative of x.
If F (x) is a function where F ' (x) = f (x, then the antiderivative of f (x) is
F (x).
We call the antiderivative as integral and write
∫ x dx = 1⁄2 x2 + C,
where C is the constan of integration.
We read this as “the integral of x with respect to x.”
In general,
if F ' (x) = f (x) then ∫ f (x) dx = F (x + C
where dx means that the integration is taking place with respect to the variable x.
Here f (x) is called the integrand. The variable of integration in an integral plays no essential role. It might be x, or t, or u, or anything else:
∫ f (x) dx, ∫ f (t) dt, ∫ f (u) du, etc.
Example 1.
Find the antiderivative of
(a) √
x
(b) 3x5
(c) e3x
(d) 1⁄x3.
Solution
Since d⁄dx
x3⁄2 =
3⁄2 x1⁄2
and
d⁄dx (
2⁄3 x3⁄2
) = x1⁄2 =
√
x ,
the antiderivative of √
x is 2⁄3
x3⁄2 .
(b) Since d⁄dx x6 = 6x5 and
d⁄dx (
1⁄2 x6 ) = 3x5,
the antiderivative of 3x5 is 1⁄2 x6.
(c) Since d⁄dx e3x = 3e3x
and
d⁄dx (
1⁄3 e3x ) = e3x ,
the antiderivative of e3x is 1⁄3 e3x.
(d) Since d⁄dx x-2 = -2x-3 and
d⁄dx (-
1⁄2x2 ) =
1⁄x3 ,
the antiderivative of 1⁄x3 is -
1⁄2x2 .
We now describe the integration of fundamental functions. We know that
d⁄dx xn + 1 = (n + 1)xn .
The reverse of this process is
∫ xn dx = 1⁄n + 1 xn + 1 + C
for n ≠ -1.
When n = 0, it is seen that
∫ x0 dx = ∫ 1 dx = ∫ dx = x + C.
∫ dx = x + C.
When n = -1, let us consider the differentiation of ln x.
Since d⁄dx ln x =
1⁄x, it follows that
∫ 1⁄x dx = ln x + C, for x > 0.
For x < 0,
d⁄dx ln |x| =
d⁄dx ln (-x)
= 1⁄x , by Chain Rule.
∫ 1⁄x dx = ln |x| + C, x ≠ 0
Rules of Integration
Suppose f (x) and g (x) are continuous functions and k ∈ ℝ
1. ∫ k dx = kx + C.
2. ∫ k f (x) dx = k ∫ f (x) dx.
3. ∫ [ f (x ± g (x) ] dx = ∫ f (x) dx ± ∫ g (x) dx.
Example 2.
Evaluate each of the following integrals.
(a) ∫ (4x5 + 1) dx
(b) ∫ (2x6 - 1⁄3 x3 +
3⁄x) dx
(c) ∫ 5x √
x dx
(d) ∫ (x - 1)2⁄
√
x
dx.
Solution
(a) ∫ (4x5 + 1) dx
= 4 ∫ x5 dx + ∫ 1 dx
= (4⁄6 x6 + C1) + (x + C2);
(C1 and C2 are constants of integration)
= (2⁄3 x6 + x) + C1 + C2
= (2⁄3 x6 + x) + C.
(C = C1 + C2 is another constant of integration)
From now on, we shall write constant of integration only in the answer.
(b) ∫ (2x6 - 1⁄3 x3 +
3⁄x ) dx
= 2 ∫ x6 dx - 1⁄3 ∫ x3 dx + 3 ∫
1⁄x dx
= 2⁄7 x7 -
1⁄12 x4 + 3 ln |x| + C.
(c) ∫ 5x √
x dx
= 5 ∫ x x1⁄2 dx
= 5 ∫ x3⁄2 dx
= 5 (2⁄5 x5⁄2
) + C.
= 2x5⁄2 + C.
(d) ∫ (x - 1)2⁄
√
x
dx = ∫ x2 - 2x + 1⁄2
x1⁄2 dx
= ∫ (x2⁄
x1⁄2 -
2x⁄x1⁄2
+ 1⁄
x1⁄2 ) dx
= ∫ x3⁄2 dx - 2 ∫
x1⁄2 dx + ∫
x- 1⁄2 dx.
= 2⁄5 x5⁄2
- 4⁄3
x3⁄2 +
2x1⁄2 + C.
Exercise 10.1
1. Evaluate the following integrals:
(a) ∫ 4xx dx
Solution
∫ 4xx dx = 4 ∫ x9 dx
= 4 ⋅ x8 + 1 ⁄ 8 + 1 + C
= 4 ⁄ 9 x9 + C.
(b) ∫ 3 ⁄ 2 x2
∛
x dx
Solution
∫ 3 ⁄ 2 x2
∛
x dx =
∫ 3 ⁄ 2 x2 ⋅ x
1 ⁄ 3 dx
= 3 ⁄ 2 ∫ x
7 ⁄ 3 dx
= 3 ⁄ 2 ⋅
x 7 ⁄ 3 + 1
⁄ 7 ⁄ 3 + 1 + C
= 3 ⁄ 2 ⋅
x 10 ⁄ 3
⁄ 10 ⁄ 3 + C
= 3 ⁄ 2 ⋅ 3 ⁄ 10
x 10 ⁄ 3 + C
= 9 ⁄ 20 x
10 ⁄ 3 + C.
(c) ∫ (5x + 2) dx
∫ (5x + 2) dx = ( 1 ⁄ ln 5 5x
+ 2 ⋅ x0 + 1 ⁄ 0 + 1 ) + C
= 5x ⁄ ln 5 + 2x + C
for sin2 α = 1 ⁄ 2 (1 - cos 2α),
cos 2α = 1 - 2 sin2 α
2 sin2 α + cos 2α = 1
2 sin2 α = 1 - cos 2α
sin2α = 1 ⁄ 2 (1 - cos 2α)
for ∫ cos 2x dx = sin 2x ⁄ 2,
Let 2x = u
Then 2dx = du
dx = 1 ⁄ 2 du
∫ cos 2x dx = ∫ cos u 1 ⁄ 2 du
= 1 ⁄ 2 ∫ cos u du
= 1 ⁄ 2 sin u + C
= 1 ⁄ 2 sin 2x + C
= sin 2x ⁄ 2 + C.
(d) ∫ sin2 x dx
Solution
∫ sin2 x dx = ∫ 1 ⁄ 2 (1 - cos 2x) dx
= 1 ⁄ 2 ∫ (1 - cos 2x) dx
= 1 ⁄ 2 (
1 ⋅ x0 + 1 ⁄ 0 + 1 -
sin 2x ⁄ 2) + C
= 1 ⁄ 2 (x - sin 2x ⁄
2 ) + C.
(e) ∫ x + 3 ⁄
√
x
dx
Solution
∫ x + 3 ⁄
√
x
dx = ∫ ( x ⋅ x 1 ⁄ 2 +
3x - 1 ⁄ 2 ) dx
= ∫ (x 1 ⁄ 2 + 3x-
1 ⁄ 2 ) dx
= x 1 ⁄ 2 + 1
⁄ 1 ⁄ 2 + 1
+ 3 ⋅ x- 1 ⁄ 2 + 1
⁄ - 1 ⁄ 2 + 1 + C
= x 3 ⁄ 2
⁄ 3 ⁄ 2 +
3 ⋅ x 1 ⁄ 2
⁄ 1 ⁄ 2 + C
= 2 ⁄ 3 x 3 ⁄
2 + 6 x 1 ⁄ 2 + C.
(f) ∫ ( 1 ⁄ 2x + 5) dx
Solution
∫ ( 1 ⁄ 2x + 5) dx
= ∫ ( 1 ⁄ 2 ⋅ 1 ⁄ x
+ 5 ) dx
= 1 ⁄ 2 ln |x| + 5 ⋅ x0 + 1
⁄ 0 + 1 + C
= 1 ⁄ 2 ln |x| + 5x + C.
(g) ∫ ( ex + 2 ⁄ x
) dx
Solution
∫ ( ex + 2 ⁄ x
) dx = ex + 2 ln |x| + C.
(h) ∫ ( 1 ⁄ x5 + 4ex
) dx
Solution
∫ ( 1 ⁄ x5 + 4ex
) dx = x-5 + 1 ⁄ -5 + 1 +
4 ex + C
= x-4 ⁄ -4 + 4 ex + C.
(i) ∫ ( 3 ⁄ x + ex + 10
)dx
Solution
∫ ( 3 ⁄ x + ex + 10
)dx = 3 ln |x| + ex + 10 x0 + 1
⁄ 0 + 1 + C
= 3 ln |x| + ex + 10 x + C.
(j) ∫ sin2 3x dx
Solution
Let u = 3x
Then du = 3 dx
1 ⁄ 3 du = dx
∫ sin2 3x dx = ∫ sin2 u 1 ⁄ 3 du
= 1 ⁄ 3 ∫ sin2 u du
= 1 ⁄ 3 [ 1 ⁄ 2
(u - sin 2u ⁄ 2 )] + C
Substituting u = 3x,
= 1 ⁄ 3 [ 1 ⁄ 2
(3x - sin 2⋅ 3x ⁄ 2 )] + C
= 1 ⁄ 2 x -
1 ⁄ 12 sin 6x + C
sin α sin β = 1 ⁄ 2 [cos (α - β) - cos (α + β)]
(k) ∫ sin 5x sin 2x dx
Solution
∫ sin 5x sin 2x dx = 1 ⁄ 2 ∫ (cos 3x - cos 7x) dx
For cos 3x dx,
let u = 3x
Then du = 3 dx
1 ⁄ 3 du = dx
∫ cos 3x dx = ∫ cos u 1 ⁄ 3 du
= 1 ⁄ 3 ∫ cos u du
= 1 ⁄ 3 sin u + C
= 1 ⁄ 3 sin 3x + C
= sin 3x ⁄ 3 + C
For cos 7x dx,
Let v = 7x
Then dv = 7 dx
1 ⁄ 7 dv = dx
∫ cos 7x dx = ∫ cos v 1 ⁄ 7 dv
= 1 ⁄ 7 ∫ cos v dv
= 1 ⁄ 7 sin v + C
= 1 ⁄ 7 sin 7x + C
= sin 7x ⁄ 7 + C
Therefore
∫ sin 5x sin 2x dx = 1 ⁄ 2 ∫ (cos 3x - cos 7x) dx
= 1 ⁄ 2 [
sin 3x ⁄ 3 -
sin 7x ⁄ 7 ] + C.
cos A cos B = 1 ⁄ 2 [ cos (A + B) + cos (A - B)]
(l) ∫ cos 7x cos 4x dx
Solution
∫ cos 7x cos 4x dx =
1 ⁄ 2 ∫ (cos 11x + cos 3x dx
For ∫ cos 11x dx ,
Let u = 11x
Then du = 11dx
1 ⁄ 11 du = dx
∫ cos 11 x dx = ∫ cos u 1 ⁄ 1 du
= 1 ⁄ 11 ∫ cos u du
= 1 ⁄ 11 sin u + C
For cos 3x dx,
Let v = 3x ,
Then dv = 3 dx
1 ⁄ 3 dv = dx
∫ cos 3x dx = ∫p v 1 ⁄ 3 dv
= 1 ⁄ 3 sin v + C.
Therefore
∫ cos 7x cos 4x dx = 1 ⁄ 2 ∫(cos 11x + cos 3x)
dx
= 1 ⁄ 2 [
sin 11x ⁄ 11 +
sin 3x ⁄ 3 ] + C.
2. Evaluate the following integrals:
(a) ∫ (1 - 2x)3 dx
Solution
Let u = 1 - 2x ,
Then du = -2dx
- 1 ⁄ 2 du = dx
∫ (1 - 2x)3 dx = ∫ u3 - 1 ⁄ 2 du
= - 1 ⁄ 2 ∫ u3 du
= - 1 ⁄ 2 ⋅
u3 + 1 ⁄ 3 + 1 + C
= - 1 ⁄ 2 ⋅
u4 ⁄ 4 + C
= - 1 ⁄ 2
(1 - 2x)4 ⁄ 4 + C
= - 1 ⁄ 8 (1 - 2x)4
+ C
(b) ∫ sin (2πx + 7) dx
Solution
Let u = 2πx + 7
Then du = 2π dx
= 1 ⁄ 2π du = dx
∫ sin (2πx + 7) dx = ∫ sin u 1 ⁄ 2 u
1 ⁄ 2π du
= 1 ⁄ 2π ∫ sin u du
= 1 ⁄ 2π (- cos u) + C
= - 1 ⁄ 2π cos (2πx + 7) + C
(c) ∫ cos (3x - 7) dx
Solution
Let u = 3x - 7 ,
du = 3dx
1 ⁄ 3 du = dx
∫ cos (3x - 7) dx = ∫ cos u 1 ⁄ 3 du
= 1 ⁄ 3 ∫ cos u du
= 1 ⁄ 3 sin u + C
1 ⁄ 3 sin (3x - 7) + C
(d) ∫ 35x - 2 dx
Solution
∫ 35x - 2 dx = 1 ⁄ 5
1 ⁄ ln 3 35x - 2 + C
(e) ∫ 1 ⁄ 7x - 6 dx
Soution
∫ 1 ⁄ 7x - 6 dx
= 1 ⁄ 7 ln |7x - 6| + C
(f) ∫ sin 2x ⁄ sin x dx
Solution
∫ sin 2x ⁄ sin x dx
= ∫ 2 sin x cos x ⁄ sin x dx
= ∫ 2 cos x dx
= 2 sin x + C (sin x ≠ 0)
(g) ∫ sec2(2x + 3) dx
Solution
∫ sec2(2x + 3) dx = 1 ⁄ 2 tan (2x + 3) + C
(h) ∫ e7x - 3 dx
Solution
∫ e7x - 3 dx = 1 ⁄ 7 e7x - 3
+ C
(i) ∫ (1 + tan2 2πx) dx
Solution
Let u = 2πx ,
Then du = 2π dx
1 ⁄ 2π du = dx
∫ (1 + tan2 2πx) dx = ∫ sec2 2π x dx
= ∫ sec2 u 1 ⁄ 2π du
= 1 ⁄ 2π ∫ sec2 u du
= 1 ⁄ 2π tan u + C
= 1 ⁄ 2π tan 2πx + C