Example 6.
Evaluate each of the following integrals.
(a) ∫ xex2 dx
(b) ∫ sin4 x cos x dx
(c) ∫ x2 ( x3⁄3 + 1
)2 dx
(d) ∫ √
1 - 5x dx
(e) ∫ 3x √
x2 + 5 dx
(f) ∫ cos3 x dx
Solution
(a) ∫ xex2 dx
Let u = x2. Then du = 2x dx,
1⁄2 du = x dx.
∫ xex2 = ∫ ex2 x dx
= ∫ eu 1⁄2 eu + C
= 1⁄2 ex2 + C.
(b) ∫ sin4 x cos x dx .
Let u = sin x. Then du = cos x dx .
∫ sin x4 cos x dx = ∫ u4 du
= u5⁄5 + C =
sin5 x⁄5 + C.
(c) ∫ x2 ( x3⁄3 + 1
)2 dx
Let u = x3⁄3 + 1. Then du = x2 dx.
∫ x2 ( x3⁄3 + 1 )
3 dx = ∫ u3 du
= u4⁄4 + C
= 1⁄4 (
x3⁄3 + 1 )4 + C.
(d) ∫ √
1 - 5x dx
Let u = 1 - 5x. Then du = -5 dx,
- 1⁄5 du = dx.
∫ √
1 - 5x dx = ∫(1 - 5x)1⁄2
dx
= ∫ u1⁄2 (-
1⁄5) du
= - 1⁄5 ⋅ 2⁄3
u3⁄2 + C
= - 2⁄15 u3⁄2
+ C
= - 2⁄15(1 - 5x)1⁄
2 + C.
(e) ∫ 3x √
x2 + 5 dx
Let u = x2 + 5. Then 1⁄2du = x dx
∫ 3x √
x2 + 5 dx = 3 ∫ (x2 + 5)
1⁄2 x dx
= 3 ∫ u1⁄2
1⁄2 du
= 3⁄2 ⋅ 2⁄3
u3⁄2 + C
= u 3⁄2 + C
= (x2 + 5)3⁄2 + C.
(f) ∫ cos3 x dx
We use cos2 x = 1 - sin2 x, then
∫ cos3 x dx = ∫ (1 - sin2 x) cos x dx.
Let u = sin x, then du = cos x dx
∫p cos3 x dx = ∫ (1 - u2 du
= u - u3⁄3 + C
= sin x - 1⁄3 sin3 x + c.
2. ∫ g ' (x)⁄g (x) dx
Let u = g (x). Then du = g ' (x dx.
Thus
∫ g ' (x)⁄g (x) dx =
∫ 1⁄u du = ln |u| + C.
∫ g ' (x)⁄g (x dx = ln |g (x)| +
C.
∫ tan x dx = ∫ sin x⁄cos x dx =
- ln |cos x| + C.
∫ cot x dx = ∫ cos x⁄sin x dx =
ln |sin x| + C.
Example 7.
Evaluate the following integrals.
(a) ∫ 2x - 1⁄x2 - x - 6 dx
(b) ∫ x2 + 2x - 1⁄x2 - 1 dx
(c) ∫ 1⁄1 + ex dx
Solution
(a) ∫ 2x - 1⁄x2 - x - 6 dx
Let u = x2 - x - 6. Then du = (2x - 1) dx.
∫ 2x - 1⁄x2 - x - 6 dx =
∫ 1⁄u du
= ln |u| + C = ln |x2 - x - 6| + C.
(b) ∫ x2 + 2x - 1⁄x2 - 1 dx
We can rewrite as
∫ x2 + 2x - 1⁄x2 - 1 dx
= ∫ (1 + 2x⁄x2 - 1
) dx
= ∫ dx + ∫ 1⁄u du
= x + ln |u| + C
= x + ln |x2 - 1| + C.
(c) ∫ 1⁄1 + ex dx
We can rewrite by multiplying and dividing by e-x.
(c) ∫ 1⁄1 + ex dx
= ∫ 1⁄1 + ex
e-x⁄e-x dx
= ∫ e-x⁄e-x + 1 dx.
Let u = e-x + 1. Then du = -e-x dx.
∫ 1⁄1 + ex dx
= ∫ e-x⁄e-x + 1 dx
= - ∫ 1⁄u du
= - ln |u| + C.
= - ln (e-x + 1) + C.
We now explain some integrals involving the trigonometric functions using method of substitution.
(a) ∫ sec x dx = ln | sec x + tan x + C
Proof
We have
∫ sec x dx = ∫ sec x sec x + tan x⁄sec x + tan x
dx
= ∫ sec2 x + sec x tan x⁄sec x + tan x dx.
Let u = sec x + tan x. Then
du = (sec x tan x + sec2 x) dx.
So,
∫ sec x dx = ∫ 1⁄u du
= ln |u| + C
= ln |sec x + tan x| + C.
(b) ∫ csc x dx = - ln |csc x + cot x| + C
Proof
We have
∫ csc x dx = ∫ csc x csc x + cot x⁄csc x + cot x
dx
= ∫ csc2 x + cot x csc x⁄csc x + cot x
dx.
Let u = csc x + cot x. Then
du = - (cot x csc x + csc2 x) dx.
So,
∫ csc x dx = - ∫ 1⁄u du = - ln |u| + C
= - ln |csc x + cot x| + C.
Exercise 10.2
1. Integrate the following functions using the given substitutions.
(a) 4x3 √
x4 - 1 ; u = x4 - 1
Solution