Example 6.
Evaluate each of the following integrals.
(a) ∫ xex2 dx
(b) ∫ sin4 x cos x dx
(c) ∫ x2 ( x33 + 1 )2 dx
(d) ∫ √ 1 - 5x   dx
(e) ∫ 3x x2 + 5   dx
(f) ∫ cos3 x dx

Solution
(a) ∫ xex2 dx
Let u = x2. Then   du = 2x dx,
12 du = x dx.
xex2 = ∫ ex2 x dx
= ∫ eu 12 eu + C
= 12 ex2 + C.

(b)   ∫ sin4 x cos x dx .
Let u = sin x. Then du = cos x dx .
∫ sin x4 cos x dx = ∫ u4 du
= u55 + C = sin5 x5 + C.

(c) ∫ x2 ( x33 + 1 )2 dx
Let u = x33 + 1. Then du = x2 dx.
x2 ( x33 + 1 ) 3 dx = ∫ u3 du
= u44 + C
= 14 ( x33 + 1 )4 + C.

(d) ∫ √ 1 - 5x   dx
Let u = 1 - 5x. Then du = -5 dx,
- 15 du = dx.
∫ √ 1 - 5x   dx = ∫(1 - 5x)12 dx
= ∫ u12 (- 15) du
= - 1523 u32 + C
= - 215 u32 + C
= - 215(1 - 5x)1 2 + C.

(e) ∫ 3x x2 + 5   dx
Let u = x2 + 5. Then 12du = x dx
∫ 3x x2 + 5   dx = 3 ∫ (x2 + 5) 12 x dx
= 3 ∫ u12 12 du
= 3223 u32 + C
= u 32 + C
= (x2 + 5)32 + C.

(f) ∫ cos3 x dx

We use   cos2 x = 1 - sin2 x, then
∫ cos3 x dx = ∫ (1 - sin2 x) cos x dx.
Let u = sin x, then du = cos x dx
∫p cos3 x dx = ∫ (1 - u2 du
= u - u33 + C
= sin x - 13 sin3 x + c.

2. ∫ g ' (x)g (x) dx
Let u = g (x). Then   du = g ' (x dx.
Thus
g ' (x)g (x) dx = ∫ 1u du = ln |u| + C.

g ' (x)g (x dx = ln |g (x)| + C.
∫ tan x dx = ∫ sin xcos x dx = - ln |cos x| + C.
∫ cot x dx = ∫ cos xsin x dx = ln |sin x| + C.


Example 7.
Evaluate the following integrals.
(a) ∫ 2x - 1x2 - x - 6 dx
(b) ∫ x2 + 2x - 1x2 - 1 dx
(c) ∫ 11 + ex dx

Solution
(a) ∫ 2x - 1x2 - x - 6 dx
Let u = x2 - x - 6. Then   du = (2x - 1) dx.
2x - 1x2 - x - 6 dx = ∫ 1u du
= ln |u| + C = ln |x2 - x - 6| + C.

(b) ∫ x2 + 2x - 1x2 - 1 dx
We can rewrite as
x2 + 2x - 1x2 - 1 dx = ∫ (1 + 2xx2 - 1 ) dx
= ∫ dx + ∫ 1u du
= x + ln |u| + C
= x + ln |x2 - 1| + C.

(c) ∫ 11 + ex dx
We can rewrite by multiplying and dividing by e-x.
(c) ∫ 11 + ex dx = ∫ 11 + ex e-xe-x dx
= ∫ e-xe-x + 1 dx.
Let u = e-x + 1. Then   du = -e-x dx.
11 + ex dx = ∫ e-xe-x + 1 dx
= - ∫ 1u du
= - ln |u| + C.
= - ln (e-x + 1) + C.

We now explain some integrals involving the trigonometric functions using method of substitution.

(a)   ∫ sec x dx = ln | sec x + tan x + C
Proof

We have
∫ sec x dx = ∫ sec x sec x + tan xsec x + tan x dx
= ∫ sec2 x + sec x tan xsec x + tan x dx.
Let u = sec x + tan x. Then
du = (sec x tan x + sec2 x) dx.
So,
∫ sec x dx = ∫ 1u du
= ln |u| + C
= ln |sec x + tan x| + C.

(b) ∫ csc x dx = - ln |csc x + cot x| + C
Proof

We have
∫ csc x dx = ∫ csc x csc x + cot xcsc x + cot x dx
= ∫ csc2 x + cot x csc xcsc x + cot x dx.
Let u = csc x + cot x. Then
du = - (cot x csc x + csc2 x) dx.
So,
∫ csc x dx = - ∫ 1u du = - ln |u| + C
= - ln |csc x + cot x| + C.

Answer to 1.(h)

ပံ့ပိုးကူညီသူ


-->

Exercise 10.2
1. Integrate the following functions using the given substitutions.
(a) 4x3 x4 - 1  ;   u = x4 - 1
Solution

Let u = x4 - 1
du dx = 4x3
du = 4x3 dx
$$ \int 4x^3 \sqrt{x^4 - 1}\ dx = \int (x^4 - 1)^{\frac{1}{2}}\ 4x^3 \ dx $$ $$= \int u^{\frac{1}{2}} \ du $$ $$= \frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1}$$ = u 3 2 3 2 + C
= 2 3 (x4 - 1) 3 2 + C

(b) cos3 x sin x ;   u = cos x
Solution
Let u = cos x
du dx = - sin x
du = - sin x dx
= - du = sin x dx
∫ cos3 x sin x dx = ∫ u3 (- du)
= - ∫ u3 du
= - u3+1 3+1 + C
= - 1 4 u4 + C
= - 1 4 cos4 x + C

(c) 1 x ln |x| ;   u = ln |x|
Solution
Let u = ln |x|
du dx = 1 |x|
du = 1 x dx,     x > 0
or du = 1 - x dx ,     x < 0
- du = 1 x dx ,     x < 0
For x > 0,
1 x ln |x| dx = ∫ 1 ln |x| 1 x dx
= ∫ 1 u du
= ln |u| + C
= ln |ln |x| | + C

For x < 0
1 x ln |x| dx = ∫ 1 ln |x| 1 x dx
= - ∫ 1 u du
= - ln |u| + C
= -ln |ln |x| | + C.

(d) sin5 x cos x;   u = sin x
Solution
u = sin x
du dx = cos x
du = cos x dx
∫ sin5 x cos x dx = ∫ u5 du
= u5+1 5+1 + C
= u6 6 C
= 1 6 u6 + C
= 1 6 sin6 x + C.

(e) ln x x ,   x > 0;   u = ln x
Solution
Let u = ln x
du = 1 x dx
ln x x dx = ∫ ln x 1 x dx
= ∫ u du
= u1+1 1+1 + C
= u2 2 + C
= 1 2 u2 + C.
= 1 2 (ln x)2 + C.

(f) x3ex4 ;   u = x4
Solution
Let u = x4
du = 4x3 dx
1 4 du = x3 dx
x3 ex4 dx = ∫ ex4 x3 dx
= ∫ eu 1 4 du
= 1 4 eu du
= 1 4 eu + C
= 1 4 ex4 + C .

2. Use the substitution method to evaluate the following integrals.
(a) ∫ x 1 - x   dx
Solution
u = 1 - x     ⇒ x = 1 - u
du = - dx
- du = dx

x 1 - x   dx = x (1 - x) 1 2 dx
= ∫ (1 - u) u 1 2 (- du)
= - ∫ (1 - u) u 1 2 du
= - ∫ [u 1 2 - u 3 2 ] du
= - [ u 1 2 + 1 1 2 + 1 - u 3 2 + 1 3 2 + 1 ] + C
= u 5 2 5 2 - u 3 2 3 2 + C
= 2 5 (1 - x) 5 2 - 2 3 (1 - x) 3 2 + C.

(b) ∫ (2x + 1)(x2 + x)7 dx
Solution
Let u = x2 + x
du = (2x + 1) dx
∫ (2x + 1)(x2 + x)7 = ∫ (x2 + x)7 (2x + 1) dx
= ∫ u7 du
= u7+1 7+1 + C
= u8 8 + C
= 1 8 u8 + C
= 1 8 (x2 + x)8 + C.

(c) ∫ sin3x dx
Solution
∫ sin3 x dx = sin2 x sin x dx
= ∫ (1 - cos2 x) sin x dx
Let u = cos x
du = - sin x dx
- du = sin x dx

∫ (1 - cos2 x) sin x dx = ∫ (1 - u2(- du)
= ∫ (u2 - 1) du
= [ u2+1 2 + 1 - 1 ⋅ u0+1 0 + 1 ] + C
= u3 3 - u + C
= 1 3 cos3 x - cos x + C.

(d) ∫ x2 x3 - 2   dx
Solution
Let u = x3 - 2
du = 3x2 dx
x2 dx = 1 3 du
x2 x3 - 2   dx = ∫ √ x3 - 2   x2 dx
= ∫ (x3 - 2) 1 2 x2 dx
= ∫ u 1 2 1 3 du
= 1 3 u 1 2 du
= 1 3 u 1 2 + 1 1 2 + 1 + C
= 1 3 u 3 2 3 2 + C
= 1 3 2 3 u 3 2 + C
= 2 9 (x3 - 2) 3 2 + C

(e) ∫ sec2 x tan x dx
Solution
Let u = tan x
du dx = sec2 x
du = sec2 x dx

sec2 x tan x dx = ∫ 1 tan x sec2 x dx
= ∫ 1 u du
= ln |u| + C
= ln |tan x| + C.

(f) ∫ x x + 1   dx
Solution
Let u = x + 1     ⇒ x = u - 1
du dx = 1
du = dx
x x + 1   dx = ∫ u - 1 u   du
= ∫ ( u u   - 1 u   ) du
= ∫ ( u   ⋅ √ u   u   - 1 u   ) du
= ∫ (u 1 2 - u - 1 2 ) du
= ( u 1 2 + 1 1 2 + 1 - u- 1 2 + 1 - 1 2 + 1 ) + C
= u 3 2 3 2 - u 1 2 1 2 + C
= 2 3 u 3 2 - 2 u 1 2 + C.
= 2 3 (x + 1) 3 2 - 2(x + 1) 1 2 + C.

3. Evaluate the integral ∫ x (x2 + 1) ln (x2 + 1) dx.
Solution
Let u = ln (x2 + 1)
du dx = 1 x2 + 1 ⋅ d dx (x2 + 1)
du dx = 1 x2 + 1 ⋅ 2x
du = 1 x2 + 1 ⋅ 2x dx
1 2 du = x x2 + 1 dx
x (x2 + 1) ln (x2 + 1) dx = ∫ 1 ln (x2 + 1) x x2 + 1 dx
= ∫ 1 u 1 2 du
= 1 2 1 u du
= 1 2 ln |u| + C
= 1 2 ln | ln (x2 + 1)| + C.