1.5 Roots of Complex Numbers

An nth root of a complex number z is a complex number ω that satisfies the equation
ωn = z

Since z = r(cos θ + i sin θ) and
$$ (\sqrt[n]{r}\ (\text{cos}\ \frac{\theta}{n} + i \ \text{sin}\ \frac{\theta}{n})) = (\sqrt[n]{r})^n (\text{cos}\ n (\frac{\theta}{n}) + i\ \text{sin}\ n (\frac{\theta}{n})) $$ $$ = r (\text{cos}\ \theta + i\ \text{sin}\ \theta) = z $$ We have an nth root of a complex number z as
$$ \sqrt[n]{r} (\text{cos}\ \frac{\theta}{n} + i\ \text{sin}\ \frac{\theta}{n}). $$ Moreover, since z can also be represented as

z = r(cos (θ + 2) + i sin (θ + 2))

for every integer k, we have
$$ (\sqrt[n]{r} (\text{cos}\ \frac{\theta + 2k\pi}{n} + i\ \text{sin}\ \frac{\theta + 2k\pi}{n}))^n = (\sqrt[n]{r})^n (\text{cos}\ n\ \frac{\theta + 2k\pi}{n} + i\ \text{sin}\ n\ \frac{\theta + 2k\pi}{n}) $$ $$ = r (\text{cos}\ (\theta + 2k\pi) + i\ \text{sin}\ \theta + 2k\pi )) $$ $$ = z$$ So nth roots of z are
$$ \sqrt[n]{r} (\text{cos}\ \frac{\theta + 2k\pi}{n} + i\ sin\ \frac{\theta + 2k\pi}{n}) $$ for every integer k

But for k = n, we have
cos θ + 2 n + i sin θ + 2 n = cos θ + 2 n + i sin θ + 2 n
=cos (θ n + 2π) + i sin( θ n + 2π)
= cos θ n + i sin θ n
so that root for k = n is the same as the root for k = 0. The same is also true for k > n as the root for k = n + 1 is same as the root for k = 1, and so on. Therefore the roots of z, denoted by ωk of z are
$$ \omega_k = \sqrt[n]{r} (\text{cos}\ \frac{\theta + 2k\pi}{n} + i \ \text{sin}\ \frac{\theta + 2k\pi}{n}, \ \ \ \ \ k = 1,2,..., n-1. $$
Example 10.
Find the cube roots of z = -2 - 2i.

Solution

z = -2 - 2i = (-2, -2)
r = √ 4 + 4 = 2 √ 2 ,     cos θ = - 1 2 ,     sin θ = - 1 2
θ = - 3π 4
z = 2 √ 2 (cos (- 3π 4) + i sin ( - 3π 4))

x y θ r z = (-2, -2) O
Then we have
ωk = ∛ 2 √ 2 (cos - 3π 4 + 2 3 + i sin - 3π 4 + 2 3),       k = 0, 1, 2.
Therefore the cube roots are
ω0 = √ 2 (cos(- 3π 12) + i sin (- 3π 12))
= √ 2 ( 2 2 - i 2 2)
= 1 - i
ω1 = √ 2 (cos 5π 12 + i sin 5π 12)
= √ 2 ( 6 - √ 2 4 + i 6 + √ 2 4)
= -1 + √ 3 2 + 1 + √ 3 2 i
ω2 = √ 2 (cos( 13π 12) + i sin ( 13π 12))
= √ 2 (- 6 + √ 2 4 + i - √ 6 + √ 2 4)
= - 1 + √ 3 2 + 1 - √ 3 2 i

Example 11.

Solve z6 = 1.

Solution

1 = (1, 0) = 1(cos 0 + i sin 0) = 1 (cos (0 + 2) + i sin(0 + 2))
z6 = 1
26 = 1 (cos (0 + 2) + i sin(0 + 2))
z =1 (cos (0 + 2) + i sin(0 + 2))1 6
z = 6 1 (cos 0 + 2 6 + i sin 0 + 2 6),         k = 0, 1, 2, ....., 5

When k = 0, z = cos 0 + i sin 0 = 1.

When k = 1, z = cos π 3 + i sin π 3 = 1 2 + i 3 2 .

When k = 2, z = cos 2π 3 + i sin 2π 3 = - 1 2 + i 3 2 .

When k = 3, z = cos π + i sin π = 1.

When k = 4, z = cos 4π 3 + i sin 4π 3 = - 1 2 - i 3 2 .

When k = 5, z = cos 5π 3 + i sin 5π 3 = 1 2 - i 3 2 .


Exercise 1.5
  1. Find the square roots of the following complex numbers.

  2. (a) 1 + √ 3 i
    (b) i
    (c) - √ 3 + i
    (d) -1 - √ 3 i
    (e) - i
    (f) √ 3 - i

  3. Find the cube roots of the following complex numbers.

  4. (a) 1 + i
    (b) i
    (c) -1 + i
    (d) -1 - i
    (e) -i
    (f) 1 - i

  5. Solve the following equations.

  6. (a) z4 = -i
    (b) z4 = -1
    (c) z4 = -8 - 8 √ 3 i
    (d) z6 = -1


Answers

1. (a)     1 + √ 3 i = (1, √ 3 )

r = √ x2 + y2 = √ 1 +3 = 2
cos θ = xr = 12
sin θ = yr = 3 2
θ = π3
z = r (cos θ + i sin θ)
  = 2(cos π3 + i sin π3)
ωk = √ r (cos θ + 2kπ2 + i sin θ + 2kπ2)
  = √ 2 (cos π3 + 2kπ2 + i sin π3 + 2kπ2)
x y θ r z = (1 , √3) O
The square roots are
ω0 = √ 2 (cos π3 + 2(0)π2 + i sin π3 + 2(0)π2)
    = √ 2 (cos π6 + i sin π6)
    = √ 2 ( 3 2 + 1 2 i)
    = 6 2 + 2 2 i
ω1 = √ 2 (cos π3 + 2(1)π2 + i sin π3 + 2(1)π2)
    = √ 2 (cos π + 6π3 2 + i sin π + 6π3 2)
    = √ 2 (cos 6 + i sin 6)
    = √ 2 (cos (6+1)π6 + i sin (6+1)π6)
    = √ 2 [cos (6 + π6) + i sin (6 + π6)]
    = √ 2 [cos (π + π6) + i sin (π + π6)]
    = √ 2 [cos (π) cos ( π6) - sin (π) sin π6) + i (sin (π) cos π6 + cos (π) sin π6)]
    = √ 2 [(-1 . 3 2   -   0 . 12)   +   (0. 3 2   +   (-1 . 12 )i]
    = √ 2 [(- 3 2 - 0) + (0 - 12 )i]
    = √ 2 (- 3 2 - 12 i)
    = - √ 6 2 - 2 2 i

(b)     i = (0, 1)

r = √ x2 + y2 = √ 1 = 1
cos θ = x r = 01 = 0
sin θ = yr = 11 = 1
θ = π2
x y θ r z = (0, 1) O
z = r (cos θ + i sin θ)
  = 1 (cos π2 + i sin π2)
ωk = √ r (cos π2 + 2kπ2 + i sin π2 + 2kπ2)
The square roots are
ω0 = √ 1 (cos π2 + 2(0)π2 + i sin π2 + 2(0)π2)
    = 1 (cos π2 + 02 + i sin π2 + 02)
    = cos π4 + i sin π4
    = 1 2 + 1 2 i
    = 2 2 + 2 2 i

ω1 = √ 1 (cos π2 + 2(1)π2 + i sin π2 + 2(1)π2)
    = 1 (cos π + 4π2 2 + i sin π + 4π2 2)
    = cos 4 + i sin 4
    = cos (1 + 4)π4 + i sin (1 + 4)π4
    = cos ( π4 + 4) + i sin ( π4 + 4)
    = cos ( π4 + π) + i sin ( π4 + π)
    = (cos π4 . cos π - sin π4 . sin π) + i (sin π4 . cos π + cos π4 . sin π)
    = [ 1 2 . (-1)   -   1 2 . (0) ]   +   [1 2 . (-1)   +   1 2 . (0) ]i
    = (- 1 2 - 0) + (- 1 2 + 0) i
    = - 1 2 - 1 2 i
    = - 2 2 - 2 2 i

(c)     - √ 3 + i = (- √ 3 , 1)

r = √ x2 + y2 = √ 3 + 1 = 2
cos θ = xr = - √ 3 2
sin θ = yr = 12
θ = π - π6 = 6
x y θ r z = (-√3, 1) O
z = r (cos θ + i sin θ)
  = 2 (cos 6 + i sin 6)
ωk = √ r (cos θ + 2kπ2 + i sin θ + 2kπ2)
    = √ 2 (cos 6 + 2kπ2 + i sin 6 + 2kπ2)
The square roots are
ω0 = √ 2 (cos 6 + 2(0)π2 + i sin 6 + 2(0)π2)
    = √ 2 (cos 12 + i sin 12)
    = √ 2 [ cos (3 + 2)π12 + i sin (3 + 2)π12]
    = √ 2 [ cos (12 + 12) + i sin (12 + 12)]
    = √ 2 [cos (π4 + π6) + i sin (π4 + π6)]
    = √ 2 [(cos π4.cos π6 - sin π4.sin π6) + i (sin π4.cos π6 + cos π4.sin π6)]
    = √ 2 [(1 2 . 3 2   -   1 2 . 12)   +   i (1 2 . 3 2   +   1 2 .12)]
    = √ 2 [( 3 2 √ 2 - 12 √ 2 ) + ( 3 2 √ 2 + 12 √ 2 ) i]
    = √ 2 [ 3 - 1 2 √ 2 + 3 + 1 2 √ 2 ) i]
    = 3 - 12 + 3 + 1 2 i
ω1 = √ 2 [cos 6 + 2(1)π2 + i sin 6 + 2(1)π2]
    = √ 2 [cos 5π + 12π6 2 + i sin 5π + 12π6 2]
    = √ 2 [ cos 17π12 + i sin 17π12]
    = √ 2 [ cos (8 + 9)π12 + i sin (8 + 9)π12]
    = √ 2 [ cos (12 + 12) + i sin (12 + 12)]
    = √ 2 [ cos (3 + 4) + i sin (3 + 4)]
    = √ 2 [(cos 3.cos 4 - sin 3.sin 4) + i (sin 3.cos 4 + cos 3.sin 4)]
    = √ 2 [(-12. -1 2 - 3 2. 1 2 ) + i ( 3 2. -1 2 + -12. 1 2 )]
    = √ 2 [1 - √ 3 2 √ 2 - ( 3 + 1 2 √ 2 ) i]
    = 1 - √ 3 2 - 3 + 1 2 i

(d)     = -1 - √ 3 i   = (-1, - √ 3 )

r = √ x2 + y2 = √ 1 + 3   = 2
cos θ = xr = -12
sin θ = yr = - √ 3 2
θ = - (π - π3) = - 3
x y θ r z = (-1, -√3) O
z = r (cos θ + i sin θ)
  = 2 (cos -2π3 + i sin -2π3)
ωk = √ r (cos θ + 2kπ2 + i sin θ + 2kπ2)
    = √ 2 (cos -2π3 + 2kπ2 + i sin -2π3 + 2kπ2)
The square roots are
ω0 = √ 2 [cos -2π3 + 2(0)π2 + i sin -2π3 + 2(0)π2]
    = √ 2 (cos -2π3 + 02 + i sin -2π3 + 02)
    = √ 2 [cos -2π6 + i sin -2π6]
    = √ 2 [cos 3 + i sin 3]
    = √ 2 [12 + (- √ 3 2)i ]
    = √ 2 [12 - 3 2 i]
    = 2 2 - 6 2 i

ω1 = √ 2 [cos -2π3 + 2(1)π2 + i sin -2π3 + 2(1)π2]
    = √ 2 [cos -2π + 6π3 2 + i sin -2π + 6π3 2]
    = √ 2 [cos 6 + i sin 6]
    = √ 2 [cos 3 + i sin 3]
    = √ 2 [-12 + 3 2i ]
    = - √ 2 2 + 6 2 i

(e)     -i  = (0, -1)

r = √ x2 + y2   = √ 1   = 1
cos θ = xr = 01 = 0
sin θ = yr = -11 = -1
θ = - π2
x y θ r z = (0, -1) O

z = r (cos θ + i sin θ)
  = 1 (cos 2 + i sin 2)
ωk = √ r (cos θ + 2kπ2 + i sin θ + 2kπ2)
    = √ 1 (cos 2 + 2kπ2 + i sin 2 + 2kπ2)
The square roots are
ω0 = √ 1 [cos 2 + 2(0)π2 + i sin 2 + 2(0)π2]
= 1 (cos 4 + i sin 4)
    = 1 2 + (-1 2 ) i
    = 2 2 - 2 2 i

ω1 = √ 1 [cos 2 + 2(1)π2 + i sin 2 + 2(1)π2]
    = 1 [cos -π + 4π2 2 + i sin -π + 4π2 2]
    = cos 4 + i sin 4
    = -1 2 + 1 2 i
    = - √ 2 2 + 2 2 i

(f)     √ 3   - i     = ( √ 3   , -1)

r = √ x2 + y2 = √ 3 + 1 = 2

cos θ = xr = 3 2
sin θ = yr = -12
θ = 6
x y θ r z = ( √ 3, -1) O
z = r (cos θ + i sin θ)
  = 2 (cos 6 + i sin 6)
ωk = √ r (cos θ + 2kπ2 + i sin θ + 2kπ2)
    = √ 2 (cos 6 + 2kπ2 + i sin 6 + 2kπ2)
The square roots are
ω0 = √ 2 [cos 6 + 2(0)π2 + i sin 6 + 2(0)π2]
    = √ 2 [cos 12 + i sin 12]
    = √ 2 [cos - (4-3)π12 + i sin - (4-3)π12]
    = √ 2 [ cos (-4π12 + 12) + i sin (-4π12 + 12)]
    = √ 2 [cos (3 + π4) + i sin (3 + π4)]
    = √ 2 [(cos 3.cos π4 - sin 3.sin π4) + i (sin 3.cos π4 + cos 3.sin π4)]
    = √ 2 [(12. 1 2 - (- √ 3 2.1 2 ) + (- √ 3 2.1 2 + 12.1 2 )i]
    = √ 2 [ 1 + √ 3 2 √ 2 - 3 - 1 2 i ]
    = 1 + √ 3 2 - 3 - 1 2 i

ω1 = √ 2 [cos 6 + 2(1)π2 + i sin 6 + 2(1)π2]
    = √ 2 [cos -π + 12π6 2 + i sin -π + 12π6 2]
    = √ 2 [ cos 11π12 + i sin 11π12]
    = √ 2 [ cos (8 + 3)π12 + i sin (8 + 3)π12]
    = √ 2 [ cos (12 + 12) + i sin (12 + 12)]
    = √ 2 [ cos (3 + π4) + i sin (3 + π4)]
    = √ 2 [(cos 3.cos π4 - sin 3.sin π4) + i (sin 3.cos π4 + cos 3.sin π4)]
    = √ 2 [(-12. 1 2 - 3 2. 1 2 ) + i ( 3 2. 1 2 + -12. 1 2 )]
    = √ 2 [-1 - √ 3 2 √ 2 ) + ( 3 - 1 2 √ 2 ) i]
    = -1 - √ 3 2 + 3 - 1 2 i

2.(a)     1 + i = (1, 1)

r = √ x2 + y2   = √ 1 + 1   = √ 2
cos θ = xr = 1 2
sin θ = yr = 1 2
θ = π4
x y θ r z = (1 , 1) O
z = r (cos θ + i sin θ)
  = √ 2 (cos π4 + i sin π4)
ωk = √ r (cos θ + 2kπ3 + i sin θ + 2kπ3)
    = (∛ √ 2 ) (cos π4 + 2kπ3 + i sin π4 + 2kπ3)
The cube roots are
ω0 = (∛ √ 2 ) [cos π4 + 2(0)π3 + i sin π4 + 2(0)π3]
    = √ 2 13 [cos π12 + i sin π12]
    = 212.1 3 [cos (4 - 3)π12 + i sin (4 - 3)π12]
    = 216 [ cos (12 - 12) + i sin (12 - 12)]
    = 216 [cos (π3 - π4) + i sin (π3 - π4)]
    = 216 [(cos π3.cos π4 + sin π3.sin π4) + i (sin π3.cos π4 - cos π3.sin π4)]
    = 216 [(12. 1 2 + 3 2.1 2 ) + ( 3 2.1 2 - 12.1 2 )i]
    = 216 [ 1 + √ 3 2 √ 2 + 3 - 1 2 √ 2 i ]
    = 216 [ 2 + √ 6 4 + 6 - √ 2 4 i]

ω1 = (∛ √ 2 ) [cos π4 + 2(1)π3 + i sin π4 + 2(1)π3]
    = √ 2 13 [cos π + 8π4 3 + i sin π + 8π4 3]
    = 212.1 3 [cos 12 + i sin 12]
    = 216 [ cos 4 + i sin 4 ]
    = 216 [ -1 2 + 1 2 i ]
    = 216 [ - √ 2 2 + 2 2 i]

ω2 = (∛ √ 2 ) [cos π4 + 2(2)π3 + i sin π4 + 2(2)π3]
    = √ 2 13 [cos π + 16π4 3 + i sin π + 16π4 3]
    = 212.1 3 [cos 17π12 + i sin 17π12]
    = 212.1 3 [cos (8 + 9)π12 + i sin (8 + 9)π12]
    = 216 [ cos (12 + 12) + i sin (12 + 12)]
    = 216 [cos (3 + 4) + i sin (3 + 4)]
    = 216 [(cos 3.cos 4 - sin 3.sin 4) + i (sin 3.cos 4 - cos 3.sin 4)]
    = 216 [(-12. 1 2 - 3 2.1 2 ) + ( 3 2.-1 2 + -12.1 2 )i]
    = 216 [(-1 2 √ 2 - 3 2< 2 ) + (- √ 3 2 √ 2 - 12 √ 2 )i]
    = 216 [ -1 - √ 3 2 √ 2 - 3 + 1 2 √ 2 i ]
    = 216 [ - √ 2 - √ 6 4 - 6 + √ 2 4 i]

(b)     i   = (0, 1)

r = √ 1   = 1
cos θ = xr = 01 = 0
sin θ = yr = 11 = 1
θ = π2
x y θ r z = (0, 1) O
z = r (cos θ + i sin θ)
  = 1 (cos π2 + i sin π2)
ωk = n r (cos θ + 2kπ3 + i sin θ + 2kπ3)
    = ∛ 1 (cos π2 + 2kπ3 + i sin π2 + 2kπ3)
The cube roots are
ω0 = ∛ 1 [cos π2 + 2(0)π3 + i sin π2 + 2(0)π3]
    = 1 [cos π6 + i sin π6]
    = 3 2 + 1 2 i
ω1 = ∛ 1 [cos π2 + 2(1)π3 + i sin π2 + 2(1)π3]
    = 1 [cos π + 4π6 + i sin π + 4π6]
    = cos 6 + i sin 6
    = - √ 3 2 + 1 2 i
ω2 = ∛ 1 [cos π2 + 2(2)π3 + i sin π2 + 2(2)π3]
= 1 [cos π + 8π6 + i sin π + 8π6
    = 1 [cos 6 + i sin 6]
    = cos (4 + 5)π 6 + i sin (4 + 5)π 6
    = cos (6 + 6) + i sin (6 + 6)
    = cos (3 + 6) + i sin (3 + 6)
    = (cos 3.cos 6 - sin 3.sin 6) + i (sin 3.cos 6 + cos 3.sin 6)
    = (-12. - √ 3 2 - 3 2.12 ) + ( 3 2.- √ 3 2 + -12.1 2)i
    = ( 3 4 - 3 4) + ( -3 4 + -1 4 ) i
    = 0 + -44 i
    = -i

(c)     -1 + i   = (-1, 1)

r = √ x2 + y2 = √ 2
cos θ = xr = -1 2
sin θ = yr = 1 2
θ = 4
x y θ r z = (-1, -1) O
z = r (cos θ + i sin θ)
  = √ 2 (cos 4 + i sin 4)
ωk = n 2 (cos θ + 2kπn + i sin θ + 2kπn )
    = 2 ( cos 4 + 2kπ 3 + i sin 4 + 2kπ 3)
The cube roots are
ω0 = 2 (cos 4 + 2(0)π 3 + i sin 4 + 2(0)π3 )
    = 2 12.1 3 (cos 12 + i sin 12)
    = 2 16 (cos π4 + i sin π4)
    = 216 (1 2 + 1 2 i)
    = 6 2 ( 2 2 + 2 2 i)

ω1 = 2 (cos 4 + 2(1)π 3 + i sin 4 + 2(1)π3 )
2 (cos 3π + 8π4 3 + i sin 3π + 8π4 3 )
    = 2 12.1 3 (cos 11π12 + i sin 11π12)
    = 2 16 (cos (8 + 3)π12 + i sin (8 + 3)π12)
    = 2 16 (cos (12 + 12) + i sin (12 + 12))
    = 2 16 (cos (3 + π4) + i sin (3 + π4))
    = 216 ( (cos 3.cos π4 - sin 3.sin π4) + i (sin 3.cos π4 + cos 3.sin π4) )
    = 216 ( (-12. 1 2 - 3 2.1 2 ) + ( 3 2.1 2 + -12 .1 2 )i)
    = 216 ((-12 √ 2 - 3 2 √ 2 ) + ( 3 2 √ 2 - 12 √ 2 ) i )
    = 216 (-1 - √ 3 2 √ 2 + 3 - 1 2 √ 2 i)
    = 6 2 (- √ 2 - √ 6 4 + 6 - √ 2 4 i)

ω2 = 2 (cos 4 + 2(2)π 3 + i sin 4 + 2(2)π3 )
    = 2 (cos 3π + 16π4 3 + i sin 3π + 16π4 3 )
    = 2 12.1 3 (cos 19π12 + i sin 19π12)
    = 2 16 (cos (10 + 9)π12 + i sin (10 + 9)π12)
    = 2 16 (cos (10π12 + 12) + i sin (10π12 + 12))
    = 2 16 (cos (6 + 4) + i sin (6 + 4))
    = 216 ( (cos 6.cos 4 - sin 6.sin 4) + i (sin 6.cos 4 + cos 6.sin 4) )
    = 216 ( (- √ 3 2. -1 2 - 1 2.1 2 ) + (1 2.-1 2 + - √ 3 2 .1 2 )i)
    = 216 (( 3 2 √ 2 - 1 2 √ 2 ) + (-1 2 √ 2 - 3 2 √ 2 ) i )
    = 216 ( 3 - 1 2 √ 2 - 1 + √ 3 2 √ 2 i)
= 6 ( 2 6 - 2 4 - 2 6 + 4 i )
(d)   -1 - i   = (-1, -1)

r = x2 + y2   = √ 2
cos θ = xr = -1 2
sin θ = yr = -1 2
θ = - (π - π4 ) = -3π4
x y θ r z = (-1, -1) O
z = r (cos θ + i sin θ)
  = √ 2 (cos -3π4 + i sin -3π4)
ωk = n 2 (cos θ + 2kπn + i sin θ + 2kπn )
    = 2 ( cos -3π4 + 2kπ 3 + i sin -3π4 + 2kπ 3)
The cube roots are
ω0 = 2 (cos -3π4 + 2(0)π 3 + i sin -3π4 + 2(0)π3 )
    = 2 12.1 3 (cos -3π12 + i sin -3π12)
    = 2 16 (cos 4 + i sin 4)
    = 216 (1 2 - 1 2 i)
    = 6 2 ( 2 2 - 2 2 i)

ω1 = 2 (cos -3π4 + 2(1)π 3 + i sin -3π4 + 2(1)π3 )
2 (cos -3π + 8π4 3 + i sin -3π + 8π4 3 )
    = 2 12.1 3 (cos 12 + i sin 12)
    = 2 16 (cos (2 + 3)π12 + i sin (2 + 3)π12)
    = 2 16 (cos (12 + 12) + i sin (12 + 12))
    = 2 16 (cos (π6 + π4) + i sin (π6 + π4))
    = 216 ( (cos π6.cos π4 - sin π6.sin π4) + i (sin π6.cos π4 + cos π6.sin π4) )
    = 216 ( ( 3 2. 1 2 - 1 2.1 2 ) + (1 2.1 2 + 3 2 .1 2 )i)
    = 216 (( 3 2 √ 2 - 1 2 √ 2 ) + (1 2 √ 2 + 3 2 √ 2 ) i )
    = 216 ( 3 - 1 2 √ 2 + 1 + √ 3 2 √ 2 i)
    = 6 2 ( 6 - √ 2 4 + 2 + √ 6 4 i)

ω2 = 2 (cos -3π4 + 2(2)π 3 + i sin -3π4 + 2(2)π3 )
    = 2 (cos -3π + 16π4 3 + i sin -3π + 16π4 3 )
    = 2 12.1 3 (cos 13π12 + i sin 13π12)
    = 2 16 (cos (10 + 3)π12 + i sin (10 + 3)π12)
    = 2 16 (cos (10π12 + 12) + i sin (10π12 + 12))
    = 2 16 (cos (6 + π4) + i sin (6 + π4))
    = 216 ( (cos 6.cos π4 - sin 6.sin π4) + i (sin 6.cos π4 + cos 6.sin π4) )
    = 216 ( (- √ 3 2. 1 2 - 1 2.1 2 ) + (1 2.1 2 + - √ 3 2 .1 2 )i)
    = 216 ((- √ 3 2 √ 2 - 1 2 √ 2 ) + (1 2 √ 2 - 3 2 √ 2 ) i )
    = 216 (- √ 3 - 1 2 √ 2 + 1 - √ 3 2 √ 2 i)
= - 6 ( 2 6 - 2 4 + 2 6 - 4 i )
(e)   -i   = (0, -1)

r = x2 + y2   = √ 1   = 1
cos θ = xr = 01 = 0
sin θ = yr = -11 = -1
θ = 2
x y θ r z = (0, -1) O

z = r (cos θ + i sin θ)
  = 1 (cos 2 + i sin 2)
ωk = n r (cos θ + 2kπ3 + i sin θ + 2kπ3)
    = ∛ 1 (cos 2 + 2kπ3 + i sin 2 + 2kπ3)
The cube roots are
ω0 = ∛ 1 [cos 2 + 2(0)π3 + i sin 2 + 2(0)π3]
    = 1 [cos 6 + i sin 6]
    = 3 2 - 1 2 i
ω1 = ∛ 1 [cos 2 + 2(1)π3 + i sin 2 + 2(1)π3]
    = 1 [cos -π + 4π 6 + i sin -π + 4π6]
    = cos 6 + i sin 6
    = cos π2 + i sin π2
    = 0 + 1i
    = 0 + i

ω2 = ∛ 1 [cos 2 + 2(2)π3 + i sin 2 + 2(2)π3]
= 1 [ cos -π + 8π6 + i sin -π + 8π6]
    = 1 [ cos 6 + i sin 6]
    = cos (4 + 3)π 6 + i sin (4 + 3)π 6
    = cos (6 + 6) + i sin (6 + 6)
    = cos (3 + π2) + i sin (3 + π2)
    = (cos 3.cos π2 - sin 3.sin π2) + i (sin 3.cos π2 + cos 3.sin π2)
    = (-12.0 - 3 2.1) + ( 3 2. 0 + -12. 1)i
    = - √ 3 2 - 1 2 i

(f)   1 - i   = (1, -1)

r = √ x2 + y2   = √ 2
cos θ = xr = 1 2
sin θ = yr = -1 2
x y θ r z = (1, -1) O
θ = 4
z = r (cos θ + i sin θ)
  = √ 2 (cos 4 + i sin 4)
ωk = n 2 (cos θ + 2kπn + i sin θ + 2kπn )
    = 2 ( cos 4 + 2kπ 3 + i sin 4 + 2kπ 3)
The cube roots are
ω0 = 2 (cos 4 + 2(0)π 3 + i sin 4 + 2(0)π3 )
    = 2 12.1 3 (cos 12 + i sin 12)
    = 2 16 (cos - (4 - 3)π12 + i sin - (4 - 3)π12)
    = 2 16 (cos - (12 - 12) + i sin - (12 - 12 ) )
    = 2 16 (cos (-4π12 + 12) + i sin (-4π12 + 12 ) )
    = 2 16 (cos (3 + π4) + i sin (3 + π4 ) )
    = 2 16 (cos 3.cos π4 - sin 3.sin π4) + i (sin 3.cos π4 + cos 3.sin π4)
    = 216 ( (12. 1 2 - - √ 3 2.1 2 ) + (- √ 3 2.1 2 + 12.1 2 )i)
    = 216 ((12 √ 2 + 3 2 √ 2 ) + (- √ 3 2 √ 2 + 12 √ 2 ) i )
    = 216 (1 + √ 3 2 2 - 3 - 12 2 i)
= 6 ( 2 2 + 6 4 - 6 2 - 4 i )
ω1 = 2 (cos 4 + 2(1)π 3 + i sin 4 + 2(1)π3 )
    = 2 (cos -π + 8π4 3 + i sin -π + 8π4 3 )
    = 2 12.1 3 (cos 12 + i sin 12)
    = 2 16 (cos (3 + 4)π12 + i sin (3 + 4)π12)
    = 2 16 (cos (12 + 12) + i sin (12 + 12))
    = 2 16 (cos (π4 + π3) + i sin (π4 + π3))
    = 216 ( (cos π4.cos π3 - sin π4.sin π3) + i (sin π4.cos π3 + cos π4.sin π3) )
    = 216 ( (1 2 . 12 - 1 2 . 3 2 ) + (1 2 .1 2 + 1 2 . 3 2)i)
    = 216 ((1 2 √ 2 - 3 2 √ 2 ) + (1 2 √ 2 + 3 2 √ 2 ) i )
    = 216 (1 - √ 3 2 √ 2 + 1 + √ 3 2 √ 2 i)
= 6 ( 2 2 - 6 4 + 2 6 + 4 i )
ω2 = 2 (cos 4 + 2(2)π 3 + i sin 4 + 2(2)π3 )
    = 2 (cos -π + 16π4 3 + i sin -π + 16π4 3 )
    = 2 12.1 3 (cos 15π12 + i sin 15π12)
    = 2 16 (cos (6 + 9)π12 + i sin (6 + 9)π12)
    = 2 16 (cos (12 + 12) + i sin (12 + 12))
    = 2 16 (cos (π2 + 4) + i sin (π2 + 4))
    = 216 ( (cos π2.cos 4 - sin π2.sin 4) + i (sin π2.cos 4 + cos π2.sin 4) )
    = 216 ( ( 0 . -1 2 - 1 . 1 2 ) + (1 . -1 2 + 0 . 1 2 )i)
    = 216 ((0 - 1 2 ) + (-1 2 + 0 ) i )
    = 216 (-1 2 - 1 2 i)
= - 6 ( 2 2 2 - 2 2 i )
3.(a)   z4 = -i
-i = (0, -1) = 1 [cos ( 2 + 2kπ) + i sin ( 2 + 2kπ ) ]
z4 = -i
z4 = 1 [cos ( 2 + 2kπ) + i sin ( 2 + 2kπ ) ]
{z4 = 1 [cos ( 2 + 2kπ) + i sin ( 2 + 2kπ ) ] } 14
(z4)1 4 = 114 [cos 2 + 2kπ 4 + i sin 2 + 2kπ 4 ]
  z = ∜ 1 [cos 2 + 2kπ 4 + i sin 2 + 2kπ 4 ]   ,       k = 0, 1, 2, 3
When k = 0,
z = ∜ 1 [cos 2 + 2(0)π 4 + i sin 2 + 2(0)π 4 ]
    = 1 (cos 8 + i sin 8 )
    = ± 2 + 2 2   +   ( ± 2 - 2 2 i)

See how 8 is solved

    = 2 + 2 2   -   2 - 2 2 i

When k = 1,
z = ∜ 1 [cos 2 + 2(1)π 4 + i sin 2 + 2(1)π 4 ]
z = ∜ 1 [cos -π + 4π2 4 + i sin -π + 4π2 4 ]
    = 1 (cos 8 + i sin 8 )
    = ± 2 - 2 2   +   (± 2 - 2 2 i)

See how 8 is solved

    = 2 - 2 2   +   2 - 2 2 i

When k = 2,
z = ∜ 1 [cos 2 + 2(2)π 4 + i sin 2 + 2(2)π 4 ]
z = ∜ 1 [cos -π + 8π2 4 + i sin -π + 8π2 4 ]
    = 1 (cos 8 + i sin 8 )
    = ± 2 + 2 2   +   ( ± 2 - 2 2 i )

See how 8 is solved

    = - 2 + 2 2   +   2 - 2 2 i

When k = 3,
z = ∜ 1 [cos 2 + 2(3)π 4 + i sin 2 + 2(3)π 4 ]
z = ∜ 1 [cos -π + 12π2 4 + i sin -π + 12π2 4 ]
    = 1 (cos 11π 8 + i sin 11π8 )
    = ± 2 - 2 2   +   ( ± 2 + 2 2 i )

See how 11π8 is solved

    = - 2 - 2 2   -   2 + 2 2 i


(b)   z4 = -1
z4 = -1 = (-1, 0)
cos π = -1 and sin π = 0
r = √ x2 + y2   = √ 1 = 1
θ = π
z4 = r [cos θ + 2kπ + i sin θ + 2kπ]
    = 1 [ cos (π + 2kπ) + i sin (π +2kπ)]

{ z4 = 1 [cos (π + 2kπ) + i sin (π + 2kπ) ] } 14
(z4)1 4 = 114 [cos π + 2kπ 4 + i sin π + 2kπ4 ]
z = ∜ 1 [cos π + 2kπ 4 + i sin π + 2kπ4 ],       k = 0, 1, 2,3
When k = 0,
z = ∜ 1 [cos π + 2(0)π 4 + i sin π + 2(0)π4 ]
    = 1 [cos π 4 + i sin π 4 ]
    = 1 2 + 1 2 i
    = 2 2 + 2 2 i

When k = 1,
z = ∜ 1 [cos π + 2(1)π 4 + i sin π + 2(1)π4 ]
    = 1 [cos 4 + i sin 4 ]
    = -1 2 + 1 2 i
    = -2 2 + 2 2 i

When k = 2,
z = ∜ 1 [cos π + 2(2)π 4 + i sin π + 2(2)π4 ]
    = 1 [cos 4 + i sin 4 ]
    = [cos (4 + 1)π 4 + i sin (4 + 1)π4 ]
    = cos ( 4 + π 4 ) + i sin ( 4 + π 4 )
    = cos ( π + π 4 ) + i sin ( π + π 4 )
    = ( cos π.cos π 4 - sin π.sin π4 ) + ( sin π.cos π 4 + cos π.sin π4 ) i
    = [ -1. 1 2 - 0.1 2 ] + [ 0.1 2 + (-1).1 2 ] i
    = ( -1 2 - 0 ) + ( 0 - 1 2 ) i
    = -1 2 - 1 2 i
    = - √ 2 2 - 2 2 i

When k = 3,
z = ∜ 1 [cos π + 2(3)π 4 + i sin π + 2(3)π4 ]
    = 1 [cos 4 + i sin 4 ]
    = [cos (3 + 4)π 4 + i sin (3 + 4)π4 ]
    = cos ( 4 + 4 ) + i sin ( 4 + π 4 )
    = cos ( 4 + π ) + i sin ( 4 + π )
    = ( cos 4.cos π - sin 4.sin π ) + ( sin 4.cos π + cos π4.sin π ) i
    = [ -1 2 .(-1) - 1 2 .0 ] + [ 1 2 .(-1) + (-1 2 ).0 ] i
    = ( 1 2 - 0 ) + ( -1 2 + 0 ) i
    = 1 2 - 1 2 i
    = 2 2 - 2 2 i

(c)   z4 = -8 - 8 √ 3 i

r = √ x2 + y2   = √ (-8)2 + (-8 √ 3 )2   = √ 64 + 64(3)   = √ 256   = 16
cos θ = xr = -816 = -12
sin θ = yr = -8 √ 3 16 = - √ 3 2
θ = - (π - π3) = -2π3
z4 = r [cos (θ + 2kπ) + i sin (θ + 2kπ) ]
    = 16 [cos ( -2π3 + 2kπ) + i sin ( -2π3 + 2kπ ) ]
{z4 = 16 [cos ( -2π3 + 2kπ) + i sin ( -2π3 + 2kπ ) ] } 14
(z4)1 4 = 16 14 [cos -2π3 + 2kπ 4 + i sin -2π3 + 2kπ 4 ]
    z = ∜ 16 [cos -2π3 + 2kπ 4 + i sin -2π3 + 2kπ 4 ]   ,       k = 0, 1, 2, 3
When k = 0,
z = ∜ 16 [cos -2π3 + 2(0)π 4 + i sin -2π3 + 2(0)π 4 ]
    = 1614 (cos -2π 12 + i sin -2π12 )
    = (24) 14 [ cos 6 + i sin 6 i ]
    = 2 ( 3 2 + -12 i )
    = √ 3   - 1 i
    = √ 3   - i

When k = 1,
z = ∜ 16 [cos -2π3 + 2(1)π 4 + i sin -2π 3 + 2(1)π4 ]
    = ∜ 24 [cos -2π + 6π3 4 + i sin -2π +6π3 4 ]
    = 2 [cos 12 + i sin 12 ]
    = 2 [cos π3 + i sin π 3 ]
    = 2 ( 1 2 + 3 2 i )
    = 1 + √ 3   i

When k = 2,
z = ∜ 16 [cos -2π3 + 2(2)π 4 + i sin -2π3 + 2(2)π4 ]
    = 2 [cos -2π + 12π 12 + i sin -2π + 12π 12 ]
    = 2 [cos 10π 12 + i sin 10π12 ]
    = 2 ( cos 6 + i sin 6 )
    = 2 ( - √ 3 2   + 1 2 i )
    = - √ 3   + 1 i
    = - √ 3   + i



When k = 3,
z = ∜ 16 [ cos -2π 3 + 2(3)π 6 + i sin -2π 3 + 2(3)π 6 ]
  = ∜ 24 [ cos -2π + 18π 3 4 + i sin -2π + 18π 3 4 ]
  = 2 [ cos 16π 12 + i sin 16π 12 ]
  = 2 [ cos 3 + i sin 3 ]
  = 2 [ cos (1 + 3)π 3 + i sin (1 + 3)π 3 ]
  = 2 [ cos ( π 3 + 3 ) + i sin ( π 3 + 3 ) ]
  = 2 [ cos ( π 3 + π ) + i sin ( π 3 + π ) ]
  = 2 [ (cos π 3.cos π - sin π 3.sin π ) + (sin π 3.cos π + cos π 3.sin π ) i ]
  = 2 [ ( 1 2.(-1) - 3 2.0) + ( 3 2.(-1) + 1 2.0 ) i ]
  = 2 [ ( -1 2 - 0 ) + ( - √ 3 2 + 0 ) i ]
  = 2 ( -1 2 - 3 2 i )
  = -1 - √ 3 i



(d)   z = -1
sin π + i cos π = -1 + 0i = -1 = (-1, 0)
r = √ x2 + y2 = √ (-1)2 = √ 1 = 1
θ = π
z6 = r [cos (θ + 2kπ) + i sin (θ + 2kπ) ]
    = 1 [ cos (π + 2kπ) + i sin (π + 2kπ) ]
{z6 = 1 [ cos (π + 2kπ) + i sin (π + 2kπ) } 1 6
(z6) 1 6 = 1 1 6 [ cos π + 2kπ 6 + i sin π + 2kπ 6 ]
z   = 1 [ cos π + 2kπ 6 + i sin π + 2kπ 6 ] ,       k = 0, 1, 2, 3, 4, 5

When k = 0,
z   = 1 [ cos π + 2(0)π 6 + i sin π + 2(0)π 6 ]
  = ( cos π 6 + i sin π 6 )
  = 3 2 + 1 2 i

When k = 1,
z = 1 [ cos π + 2(1)π 6 + i sin π + 2(1)π 6 ]
  = ( cos 6 + i sin 6 )
  = ( cos π 2 + i sin π 2 )
  = 0 + 1i
  = 0 + i

When k = 2,
z = 1 [ cos π + 2(2)π 6 + i sin π + 2(2)π 6 ]
  = ( cos 6 + i sin 6 )
  = - √ 3 2 + 1 2 i

When k = 3,
z = 1 [ cos π + 2(3)π 6 + i sin π + 2(3)π 6 ]
  = [ cos 6 + i sin 6 ]
  = [ cos (3 + 4)π 6 + i sin (3 + 4)π 6 ]
  = [ cos ( 6 + 6 ) + i sin ( 6 + 6 ) ]
  = [ cos ( π 2 + 3 ) + i sin ( π 2 + 3 ) ]
  = [ (cos π 2.cos 3 - sin π 2.sin 3 ) + (sin π 2.cos 3 + cos π 2.sin 3 ) i ]
  = [0.( -1 2 ) - 1. 3 2 ] + [1.( -1 2) + 0.( -1 2) i ]
  = (0 - 3 2 ) + ( -1 2 + 0 ) i
  = - √ 3 2 - 1 2 i

When k = 4,
z = 1 [ cos π + 2(4)π 6 + i sin π + 2(4)π 6 ]
  = [ cos 6 + i sin 6 ]
  = [ cos (3 + 6)π 6 + i sin (3 + 6)π 6 ]
  = [ cos ( 6 + 6 ) + i sin ( 6 + 6 ) ]
  = [ cos ( π 2 + π ) + i sin ( π 2 + π ) ]
  = [ (cos π 2.cos π - sin π 2.sin π ) + (sin π 2.cos π + cos π 2.sin π ) i ]
  =[ 0.(-1) - 1.0] + [1.(-1) + 0.0]i
  = (0 - 0) + (-1 + 0)i
  = 0 - 1i
  = 0 - i

When k = 5,
z = 1 [ cos π + 2(5)π 6 + i sin π + 2(5)π 6 ]
  = [ cos 11π 6 + i sin 11π 6 ]
  = [ cos (5 + 6)π 6 + i sin (5 + 6)π 6 ]
  = [ cos ( 6 + 6 ) + i sin ( 6 + 6 ) ]
  = [ cos ( 6 + π ) + i sin ( 6 + π ) ]
  = [ (cos 6.cos π - sin 6.sin π ) + (sin 6.cos π + cos 6.sin π ) i ]
  = [ - √ 3 2.(-1) - 1 2.0 ] + [ 1 2.(-1) + ( - √ 3 2).0 ] i
  = ( 3 2 - 0 ) + ( -1 2 + 0 ) i
  = 3 2 - 1 2 i


ပံ့ပိုးကူညီသူများ