An nth root of a complex number z is a complex number ω that satisfies the equation
ωn = z
Since z = r(cos θ + i sin θ) and
$$ (\sqrt[n]{r}\ (\text{cos}\ \frac{\theta}{n} + i \ \text{sin}\ \frac{\theta}{n})) = (\sqrt[n]{r})^n (\text{cos}\ n (\frac{\theta}{n}) + i\ \text{sin}\ n (\frac{\theta}{n})) $$
$$ = r (\text{cos}\ \theta + i\ \text{sin}\ \theta) = z $$
We have an nth root of a complex number z as
$$ \sqrt[n]{r} (\text{cos}\ \frac{\theta}{n} + i\ \text{sin}\ \frac{\theta}{n}). $$
Moreover, since z can also be represented as
z = r(cos (θ + 2kπ) + i sin (θ + 2kπ))
for every integer k, we have
$$ (\sqrt[n]{r} (\text{cos}\ \frac{\theta + 2k\pi}{n} + i\ \text{sin}\ \frac{\theta + 2k\pi}{n}))^n = (\sqrt[n]{r})^n (\text{cos}\ n\ \frac{\theta + 2k\pi}{n} + i\ \text{sin}\ n\ \frac{\theta + 2k\pi}{n}) $$
$$ = r (\text{cos}\ (\theta + 2k\pi) + i\ \text{sin}\ \theta + 2k\pi )) $$
$$ = z$$
So nth roots of z are
$$ \sqrt[n]{r} (\text{cos}\ \frac{\theta + 2k\pi}{n} + i\ sin\ \frac{\theta + 2k\pi}{n}) $$
for every integer k
But for k = n, we have
cos θ + 2kπ⁄n + i sin
θ + 2kπ⁄n =
cos θ + 2nπ⁄n + i sin
θ + 2nπ⁄n
=cos (θ⁄n + 2π) + i sin(
θ⁄n + 2π)
= cos θ⁄n + i sin
θ⁄n
so that root for k = n is the same as the root for k = 0. The same is also true for k > n as the root for k = n + 1 is same as the root for k = 1, and so on. Therefore the roots of z, denoted by ωk of z are
$$ \omega_k = \sqrt[n]{r} (\text{cos}\ \frac{\theta + 2k\pi}{n} + i \ \text{sin}\ \frac{\theta + 2k\pi}{n}, \ \ \ \ \ k = 1,2,..., n-1. $$
Example 10.
Find the cube roots of z = -2 - 2i.
Solution
z = -2 - 2i = (-2, -2) r = √
4 + 4 =
2 √
2 , cos θ = - 1⁄
√
2 , sin θ = - 1⁄√
2 θ = - 3π⁄4 z = 2 √
2 (cos (- 3π⁄4) + i sin ( - 3π⁄4))
Then we have ωk = ∛
2 √
2 (cos - 3π⁄4 + 2kπ⁄3 + i sin
- 3π⁄4 + 2kπ⁄3), k = 0, 1, 2.
Therefore the cube roots are ω0
= √
2 (cos(- 3π⁄12) +
i sin (- 3π⁄12)) =
√
2 ( √
2 ⁄2 - i √
2 ⁄2)
= 1 - i ω1 = √
2 (cos 5π⁄12 +
i sin 5π⁄12) =
√
2 ( √
6 -
√
2 ⁄4 + i
√
6 +
√
2 ⁄4) =
-1 +
√
3 ⁄2 +
1 +
√
3 ⁄2i ω2 = √
2 (cos( 13π⁄12) +
i sin ( 13π⁄12)) =
√
2 (- √
6 +
√
2 ⁄4 + i
- √
6 +
√
2 ⁄4) = -
1 +
√
3 ⁄2 +
1 -
√
3 ⁄2i
Example 11.
Solve z6 = 1.
Solution
1 = (1, 0) = 1(cos 0 + i sin 0) = 1 (cos (0 + 2kπ) + i sin(0 + 2kπ)) z6 = 1
26 = 1 (cos (0 + 2kπ) + i sin(0 + 2kπ)) z =1 (cos (0 + 2kπ) + i sin(0 + 2kπ))1⁄6 z = 6√
1
(cos 0 + 2kπ⁄6 + i sin
0 + 2kπ⁄6), k = 0, 1, 2, ....., 5
When k = 0, z = cos 0 + i sin 0 = 1.
When k = 1, z = cos π⁄3 + i sin
π⁄3 =
1⁄2 + i
√
3 ⁄2 .
When k = 2, z = cos 2π⁄3 + i sin 2π⁄3 = - 1⁄2 + i
√
3 ⁄2 .
When k = 3, z = cos π + i sin π = 1.
When k = 4, z = cos 4π⁄3 + i sin 4π⁄3 = - 1⁄2 - i
√
3 ⁄2 .
When k = 5, z = cos 5π⁄3 + i sin 5π⁄3 = 1⁄2 - i
√
3 ⁄2 .
Exercise 1.5
Find the square roots of the following complex numbers.
(a) 1 + √
3 i
(b) i
(c) - √
3 + i
(d) -1 - √
3 i
(e) - i
(f) √
3 - i
Find the cube roots of the following complex numbers.
(a) 1 + i
(b) i
(c) -1 + i
(d) -1 - i
(e) -i
(f) 1 - i
r = √x2 + y2
= √1 +3 = 2
cos θ = x⁄r = 1⁄2
sin θ = y⁄r =
√3 ⁄2
θ = π⁄3 z = r (cos θ + i sin θ)
= 2(cos π⁄3 + i sin
π⁄3)
ωk = √r
(cos θ + 2kπ⁄2 + i sin
θ + 2kπ⁄2)
= √ 2
(cos π⁄3
+ 2kπ⁄2 + i sin
π⁄3
+ 2kπ⁄2)
The square roots are
ω0 = √ 2
(cos π⁄3
+ 2(0)π⁄2 + i sin
π⁄3
+ 2(0)π⁄2)
= √ 2
(cos π⁄6 + i sin
π⁄6)
= √ 2
(√ 3 ⁄2 +
1 ⁄2i)
=
√ 6 ⁄2 +
√ 2 ⁄2i
ω1 = √ 2
(cos π⁄3
+ 2(1)π⁄2 + i sin
π⁄3
+ 2(1)π⁄2)
= √ 2
(cos π + 6π⁄3⁄2 + i sin
π + 6π⁄3⁄2)
= √ 2
(cos 7π⁄6 + i sin
7π⁄6)
= √ 2
(cos (6+1)π⁄6 + i sin
(6+1)π⁄6)
= √ 2
[cos ( 6π⁄6 +
π⁄6) + i sin
( 6π⁄6 +
π⁄6)]
= √ 2
[cos (π + π⁄6) + i sin (π +
π⁄6)]
=
√ 2
[cos (π) cos ( π⁄6) - sin (π) sin
π⁄6) + i (sin (π) cos
π⁄6 + cos (π) sin
π⁄6)]
= √ 2
[(-1 .
√ 3 ⁄2 - 0 . 1⁄2) +
(0.
√ 3 ⁄2 + (-1 . 1⁄2
)i]
= √ 2
[(-
√ 3 ⁄2 - 0) +
(0 - 1⁄2
)i]
= √ 2
(-
√ 3 ⁄2 - 1⁄2
i)
= -
√ 6 ⁄2 -
√ 2 ⁄2i
(b) i = (0, 1)
r = √x2 + y2
= √ 1
= 1
cos θ = x⁄r =
0⁄1 = 0
sin θ = y⁄r =
1⁄1 = 1
θ = π⁄2
z = r (cos θ + i sin θ)
= 1 (cos π⁄2 + i sin
π⁄2)
ωk =
√ r
(cos π⁄2
+ 2kπ⁄2 + i sin
π⁄2
+ 2kπ⁄2)
The square roots are
ω0 =
√ 1
(cos π⁄2
+ 2(0)π⁄2 + i sin
π⁄2
+ 2(0)π⁄2)
=
1
(cos π⁄2
+ 0⁄2 + i sin
π⁄2
+ 0⁄2)
= cos
π⁄4 + i sin
π⁄4
=
1⁄
√ 2
+ 1⁄
√ 2 i
=
√ 2 ⁄2 +
√ 2 ⁄2i
ω1 = √ 1
(cos π⁄2
+ 2(1)π⁄2 + i sin
π⁄2
+ 2(1)π⁄2)
= 1
(cos π + 4π⁄2⁄2 + i sin
π + 4π⁄2⁄2)
=
cos 5π⁄4 + i sin
5π⁄4
=
cos (1 + 4)π⁄4 + i sin
(1 + 4)π⁄4
=
cos ( π⁄4 +
4π⁄4) + i sin
( π⁄4 +
4π⁄4)
=
cos ( π⁄4 + π) + i sin
( π⁄4 + π)
=
(cos π⁄4 . cos π - sin
π⁄4 . sin π) + i (sin
π⁄4 . cos π + cos
π⁄4 . sin π)
=
[ 1⁄
√ 2 . (-1) - 1⁄
√ 2 . (0) ] + [1⁄
√ 2 . (-1) +
1⁄
√ 2 . (0) ]i
= (- 1⁄
√ 2 - 0) + (- 1⁄
√ 2 + 0) i
= - 1⁄
√ 2 - 1⁄
√ 2 i
= -
√ 2 ⁄2 -
√ 2 ⁄2i
z = r (cos θ + i sin θ)
= 2 (cos -2π⁄3 + i sin
-2π⁄3)
ωk =
√ r
(cos
θ + 2kπ⁄2 + i sin
θ + 2kπ⁄2)
=
√ 2
(cos -2π⁄3
+ 2kπ⁄2 + i sin
-2π⁄3
+ 2kπ⁄2)
The square roots are
ω0 =
√ 2
[cos -2π⁄3
+ 2(0)π⁄2 + i sin
-2π⁄3
+ 2(0)π⁄2]
=
√ 2
(cos -2π⁄3
+ 0⁄2 + i sin
-2π⁄3
+ 0⁄2)
=
√ 2
[cos -2π⁄6 + i sin
-2π⁄6]
=
√ 2
[cos -π⁄3 + i sin
-π⁄3]
=
√ 2
[1⁄2 +
(-
√ 3 ⁄2)i ]
=
√ 2
[1⁄2 -
√ 3 ⁄2i]
=
√ 2 ⁄2 -
√ 6 ⁄2i
ω1 = √ 2
[cos -2π⁄3
+ 2(1)π⁄2 + i sin
-2π⁄3
+ 2(1)π⁄2]
= √ 2
[cos -2π + 6π⁄3⁄2 + i sin
-2π + 6π⁄3⁄2]
=
√ 2
[cos 4π⁄6 + i sin
4π⁄6]
=
√ 2
[cos 2π⁄3 + i sin
2π⁄3]
=
√ 2
[-1⁄2 +
√ 3 ⁄2i ]
= -
√ 2 ⁄2 +
√ 6 ⁄2i
(e) -i = (0, -1)
r =
√x2
+ y2 =
√ 1
= 1
cos θ = x⁄r =
0⁄1 = 0
sin θ = y⁄r =
-1⁄1 = -1
θ = - π⁄2
z = r (cos θ + i sin θ)
= 1 (cos -π⁄2 + i sin
-π⁄2)
ωk =
√ r
(cos
θ + 2kπ⁄2 + i sin
θ + 2kπ⁄2)
=
√ 1
(cos -π⁄2
+ 2kπ⁄2 + i sin
-π⁄2
+ 2kπ⁄2)
The square roots are
ω0 =
√ 1
[cos -π⁄2
+ 2(0)π⁄2 + i sin
-π⁄2
+ 2(0)π⁄2]
= 1 (cos -π⁄4 + i sin
-π⁄4)
= 1⁄
√ 2 + (-1⁄
√ 2 ) i
=
√ 2 ⁄2 -
√ 2 ⁄2i
ω1 = √ 1
[cos -π⁄2
+ 2(1)π⁄2 + i sin
-π⁄2
+ 2(1)π⁄2]
= 1
[cos -π + 4π⁄2⁄2 + i sin
-π + 4π⁄2⁄2]
= cos 3π⁄4 + i sin
3π⁄4
= -1⁄
√ 2 + 1⁄
√ 2 i
= -
√ 2 ⁄2 +
√ 2 ⁄2i
(f)
√ 3 - i = (
√ 3 , -1)
r =
√x2
+ y2 =
√ 3 + 1 = 2
cos θ = x⁄r =
√ 3 ⁄2
sin θ = y⁄r =
-1 ⁄2
θ = -π⁄6
z = r (cos θ + i sin θ)
= 2 (cos -π⁄6 + i sin
-π⁄6)
ωk =
√ r
(cos
θ + 2kπ⁄2 + i sin
θ + 2kπ⁄2)
=
√ 2
(cos -π⁄6
+ 2kπ⁄2 + i sin
-π⁄6
+ 2kπ⁄2)
The square roots are
ω0 =
√ 2
[cos -π⁄6
+ 2(0)π⁄2 + i sin
-π⁄6
+ 2(0)π⁄2]
=
√ 2
[cos -π⁄12 + i sin
-π⁄12]
=
√ 2
[cos - (4-3)π⁄12 + i sin
- (4-3)π⁄12]
=
√ 2
[ cos (-4π⁄12 +
3π⁄12) + i sin
(-4π⁄12 +
3π⁄12)]
=
√ 2
[cos (-π⁄3 +
π⁄4) + i sin
(-π⁄3 +
π⁄4)]
=
√ 2
[(cos -π⁄3.cos
π⁄4 - sin
-π⁄3.sin
π⁄4) + i
(sin -π⁄3.cos
π⁄4 + cos
-π⁄3.sin
π⁄4)]
=
√ 2
[(1⁄2.
1⁄
√ 2 - (-
√ 3 ⁄2.1⁄
√ 2 ) + (-
√ 3 ⁄2.1⁄
√ 2 + 1⁄2.1⁄
√ 2 )i]
=
√ 2
[ 1 +
√ 3 ⁄2
√ 2 -
√ 3 - 1
⁄2
i ]
= 1 +
√ 3 ⁄2
-
√ 3 - 1
⁄2
i
ω1 = √ 2
[cos -π⁄6
+ 2(1)π⁄2 + i sin
-π⁄6
+ 2(1)π⁄2]
= √ 2
[cos -π + 12π⁄6⁄2 + i sin
-π + 12π⁄6⁄2]
= √ 2 [
cos 11π⁄12 + i sin
11π⁄12]
= √ 2 [
cos (8 + 3)π⁄12 + i sin
(8 + 3)π⁄12]
= √ 2 [
cos (8π⁄12 +
3π⁄12) + i sin
(8π⁄12 +
3π⁄12)]
= √ 2 [
cos (2π⁄3 +
π⁄4) + i sin
(2π⁄3 +
π⁄4)]
=
√ 2
[(cos 2π⁄3.cos
π⁄4 - sin
2π⁄3.sin
π⁄4) + i
(sin 2π⁄3.cos
π⁄4 + cos
2π⁄3.sin
π⁄4)]
=
√ 2
[(-1⁄2.
1⁄
√ 2 -
√ 3 ⁄2.
1⁄
√ 2 ) + i
(
√ 3 ⁄2.
1⁄
√ 2 +
-1⁄2.
1⁄
√ 2 )]
=
√ 2
[-1 -
√ 3 ⁄2
√ 2 ) + (
√ 3 - 1
⁄2
√ 2 ) i]
= -1 -
√ 3 ⁄2 +
√ 3 - 1
⁄2i
r =
√x2 + y2 =
√ 1 = 1
cos θ = x⁄r =
0⁄1
= 0
sin θ = y⁄r =
-1⁄1
= -1
θ = -π⁄2
z = r (cos θ + i sin θ)
= 1
(cos -π⁄2 + i sin
-π⁄2)
ωk =
n√ r
(cos
θ + 2kπ⁄3 + i sin
θ + 2kπ⁄3)
=
∛ 1
(cos -π⁄2
+ 2kπ⁄3 + i sin
-π⁄2
+ 2kπ⁄3)
The cube roots are
ω0 =
∛ 1
[cos -π⁄2
+ 2(0)π⁄3 + i sin
-π⁄2
+ 2(0)π⁄3]
= 1 [cos -π⁄6 + i sin
-π⁄6]
=
√ 3 ⁄2 -
1 ⁄2i
ω1 =
∛ 1
[cos -π⁄2
+ 2(1)π⁄3 + i sin
-π⁄2
+ 2(1)π⁄3]
= 1 [cos -π + 4π⁄6 + i sin
-π + 4π⁄6]
= cos 3π⁄6 + i sin
3π⁄6
= cos π⁄2 + i sin
π⁄2
= 0 + 1i
= 0 + i
ω2 =
∛ 1
[cos -π⁄2
+ 2(2)π⁄3 + i sin
-π⁄2
+ 2(2)π⁄3]
= 1 [
cos -π + 8π⁄6 + i sin
-π + 8π⁄6]
= 1 [
cos 7π⁄6 + i sin
7π⁄6]
= cos (4 + 3)π ⁄6 + i sin
(4 + 3)π ⁄6
=
cos (4π⁄6 +
3π⁄6) + i sin
(4π⁄6 +
3π⁄6)
=
cos (2π⁄3 +
π⁄2) + i sin
(2π⁄3 +
π⁄2)
=
(cos 2π⁄3.cos
π⁄2 - sin
2π⁄3.sin
π⁄2) + i
(sin 2π⁄3.cos
π⁄2 + cos
2π⁄3.sin
π⁄2)
=
(-1⁄2.0
-
√ 3 ⁄2.1) + (
√ 3 ⁄2. 0 + -1⁄2. 1)i
=
-
√ 3 ⁄2 - 1
⁄2i
(f) 1 - i = (1, -1)
r =
√x2 + y2 =
√ 2
cos θ = x⁄r =
1⁄
√ 2
sin θ = y⁄r =
-1⁄
√ 2
θ = -π⁄4 z = r (cos θ + i sin θ)
=
√ 2
(cos -π⁄4 + i sin
-π⁄4)
ωk =
n√ 2 (cos
θ + 2kπ⁄n + i sin
θ + 2kπ⁄n
)
=
∛
√ 2 (
cos -π⁄4 + 2kπ ⁄3 + i sin
-π⁄4 + 2kπ ⁄3)
The cube roots are
ω0 =
∛
√ 2
(cos -π⁄4 + 2(0)π⁄3 + i sin -π⁄4 + 2(0)π⁄3)
= 21⁄2.1⁄3
(cos -π⁄12 + i sin
-π⁄12)
= 21⁄6
(cos - (4 - 3)π⁄12 + i sin
- (4 - 3)π⁄12)
= 21⁄6
(cos - (4π⁄12
- 3π⁄12) + i sin
- (4π⁄12 - 3π⁄12 )
)
= 21⁄6
(cos (-4π⁄12
+ 3π⁄12) + i sin
(-4π⁄12 + 3π⁄12 )
)
= 21⁄6
(cos (-π⁄3
+ π⁄4) + i sin
(-π⁄3 + π⁄4 )
)
= 21⁄6
(cos -π⁄3.cos
π⁄4 - sin
-π⁄3.sin
π⁄4) + i
(sin -π⁄3.cos
π⁄4 + cos
-π⁄3.sin
π⁄4)
= 21⁄6
( (1⁄2.
1⁄
√ 2 - -
√ 3 ⁄2.1⁄
√ 2 ) + (-
√ 3 ⁄2.1⁄√ 2 +
1⁄2.1⁄
√ 2 )i)
= 21⁄6
((1⁄2
√ 2 +
√ 3 ⁄2
√ 2 ) + (-
√ 3 ⁄2
√ 2 + 1⁄2
√ 2 ) i )
= 21⁄6
(1 +
√ 3 ⁄2
√ 2 -
√ 3 -
1⁄2
√ 2 i)