CHAPTER 10

It is the chapter on the method of integration. Basic integration, substitution method, integration by parts and partial fraction method are illustrated.

Method of Integration

In this chapter, we first describe how we can reverse the differentiation. Then we explain the following:

  • integrating the fundamental functions,

  • integrating the trigonometric, exponential and logarithmic functions,

  • method of integration: substitution, integration by parts and partial fraction.
  • 10.1 Antiderivatives

    Consider
    f ' (x) = 3x2.
    The natural question aries, what is the function f (x) ? Namely, what is f in terms of x? We know that differentiation decreases the power by 1, so f must contain x3.
    If f (x) = x3,     then   f ' (x) = 3x2, or
    If f (x) = x3 + 2,   then   f ' (x) = 3x2, or
    If f (x) = x3 - 12,   then   f ' (x) = 3x2, etc.

    It means that there are many such functions of the form
    f (x) = x3 + C
    where C is an arbitrary constant.
    We say that
    x3 is the antiderivative of 3x2.
    Next consider
    f ' (x) = x.
    We think the same way as above, the original function f must contain x2. However,
    ddx = x2 = 2x,
    we see the extra factor 2. If we multiply both sides by 12, then
    ddx ( 12 x2) = x.

    If   f (x) = 12 x2 + C where C is an arbitrary constant, then f ' (x) = x, so 12 x2 is the antiderivative of x.

    If   F (x) is a function where F ' (x) = f (x), then the antiderivative of f (x) is F (x).

    We call the antiderivative as integral and write
    x dx = 12 x2 + C,
    where C is the constan of integration.
    We read this as “the integral of x with respect to x.”
    In general,
    if   F ' (x) = f (x)   then   ∫ f (x) dx = F (x) + C

    where dx means that the integration is taking place with respect to the variable x.
    Here f (x) is called the integrand. The variable of integration in an integral plays no essential role. It might be x, or t, or u, or anything else:
    f (x) dx,     ∫ f (t) dt,   ∫ f (u) du,   etc.

    Example 1.
    Find the antiderivative of
    (a) √ x  
    (b) 3x5
    (c) e3x
    (d) 1x3.
    Solution
    Since   ddx x32 = 32 x12   and ddx ( 23 x32 ) = x12 = √ x  ,
    the antiderivative of √ x   is 23 x32 .

    (b) Since   ddx x6 = 6x5   and
    ddx ( 12 x6 ) = 3x5,
    the antiderivative of 3x5 is 12 x6.

    (c) Since   ddx e3x = 3e3x   and
    ddx ( 13 e3x ) = e3x ,
    the antiderivative of e3x is 13 e3x.

    (d) Since ddx x-2 = -2x-3   and
    ddx (- 12x2 ) = 1x3 ,
    the antiderivative of 1x3 is - 12x2 .
    We now describe the integration of fundamental functions. We know that
    ddx xn + 1 = (n + 1)xn .
    The reverse of this process is
    xn dx = 1n + 1 xn + 1 + C     for n ≠ -1.

    When n = 0, it is seen that
    x0 dx = ∫ 1 dx = ∫ dx = x + C.
    dx = x + C.

    When n = -1, let us consider the differentiation of ln x.
    Since ddx ln x = 1x, it follows that
    1x dx = ln x + C,   for x > 0.
    For x < 0,
    ddx ln |x| = ddx ln (-x) = 1-x (-1)
    = 1x , by Chain Rule.
    1x dx = ln |x| + C,   x ≠ 0


    Rules of Integration
    Suppose f (x) and g (x) are continuous functions and k
    1. ∫ k dx = kx + C.
    2. ∫ k f (x) dx = kf (x) dx.
    3. ∫ [ f (x) ± g (x) ] dx = ∫ f (x) dx ± ∫ g (x) dx.

    Example 2.
    Evaluate each of the following integrals.
    (a) ∫ (4x5 + 1) dx
    (b) ∫ (2x6 - 13 x3 + 3x) dx
    (c) ∫ 5x x   dx
    (d) ∫ (x - 1)2 x   dx.
    Solution
    (a) ∫ (4x5 + 1) dx
    = 4 ∫ x5 dx + ∫ 1 dx
    = (46 x6 + C1) + (x + C2);   (C1 and C2 are constants of integration)
    = (23 x6 + x) + C1 + C2
    = (23 x6 + x) + C.   (C = C1 + C2 is another constant of integration)
    From now on, we shall write constant of integration only in the answer.

    (b) ∫ (2x6 - 13 x3 + 3x ) dx
    = 2 ∫ x6 dx - 13x3 dx + 3 ∫ 1x dx
    = 27 x7 - 112 x4 + 3 ln |x| + C.

    (c) ∫ 5x x   dx
    = 5 ∫ x x12 dx
    = 5 ∫ x32 dx
    = 5 (25 x52 ) + C.
    = 2x52 + C.

    (d) ∫ (x - 1)2 x   dx = ∫ x2 - 2x + 12 x12 dx
    = ∫ (x2 x12 - 2xx 12 + 1 x 12 ) dx
    = ∫ x32 dx - 2 ∫ x 12 dx + ∫ x- 12 dx.
    = 25 x52 - 43 x32 + 2x12 + C.

    Integrating Exponential Function

    ddx ax = ax ln a,           ∫ ax dx = 1ln a ax + C,   where a > 0, a ≠ 1.
    When a = e,
    ddx ex = ex,           ∫ ex dx = ex + C.

    Example 3.
    Find the following integrals.
    (a) ∫ e-x + 1e-x dx
    (b) ∫ (ex + 2x) dx
    (c) ∫ (ex log 5 + 1x2 ) dx
    (d) ∫ 3x ln 3 dx.
    Solution
    (a) ∫ e-x + 1e-x dx = ∫ (1 + ex) dx
    = ∫ 1 dx + ∫ ex dx = x + ex + C.

    (b) ∫ (ex + 2x) dx = ∫ ex dx + ∫ 2x dx
    = ex + x2 + C.

    (c) ∫ (ex log 5 + 1x2 ) dx = ∫ ex log 5 dx + ∫ x-2 dx
    = ex log 5 - 1x + C.

    (d) ∫ 3x ln 3 dx = 1ln 3 3x Ln 3 + C
    = 3x + C.

    Integrating Trigonometric Functions

    ddx sin x = cos x,     ∫ cos x dx = sin x + C.
    ddx (-cos x) = -(-sin x) = sin x,     ∫ sin x dx = -cos x + C.
    ddx tan x = sec2 x,     ∫ sec2 x dx = tan x + C.

    Example 4.
    Evaluate.
    (a) ∫ (3 cos x - 5 sin x) dx
    (b) ∫ (ex + 2 sin x) dx
    (c) ∫ ex - √ x   2 dx
    (d) ∫ (1 + tan2 x) dx

    Solution
    (a) ∫ (3 cos x - 5 sin x) dx = 3 ∫ cos x dx - 5 ∫ sin x dx
    = 3 sin x + 5 cos x = C.

    (b) ∫ (ex + 2 sin x) dx = ∫ ex dx + 2 ∫ sin x dx
    = ex - 2 cos x + C.

    (c) ∫ ex - √ x   2 dx = 12ex dx - 12x12 dx
    = 12 ex - 13 x32 + C.

    (d) ∫ (1 + tan2 x) dx = ∫ sec2 x dx
    = tan x + C.

    Integrating f (ax + b)

    We have learned the reverse process of differentiation as an integration. Now we consider the integral of function which used the chain rule for differentiation.
    Consider the integral
    ∫ (4x + 1)5 dx.
    By the chain rule,
    ddx (4x + 1)6 = 6(4x + 1)5 ddx (4x + 1)
    = 24 (4x + 1)5.
    Multiplying by 124 on both sides, we get
    124 ddx (4x + 1)6 = (4x + 1)5.
    ddx ( 124 (4x + 1)6 ) = (4x + 1)5.
    Therefore
    ∫ (4x + 1)5 dx = 124 (4x + 1)6 + C.

    For n ≠ -1,
    ddx ( 1a(n + 1) (ax + b)n + 1 ) = (ax + b)n.

    ∫ (ax + b)n dx = 1a (ax + b)n + 1 (n + 1) + C,   n ≠ -1.

    When n = -1,
    ddx ( 1a ln (ax + b)) = 1a ( aax + b )
    = 1ax + b ,     a ≠ 0.

    1ax + b dx = 1a ln |ax + b| + C.

    In general, if f is a differentiable functiion of x, then
    ddx f (ax + b) = f ' (ax + b) ddx (ax + b)
    = af ' (ax + b)
    and reversing this we get
    f ' (ax + b) dx = 1a f(ax + b) + C.

    For the trigonometric functions of the form f (ax + b),
    ∫ cos(ax + b) dx = 1a sin (ax + b) + C,
    ∫ sin (ax + b) dx = - 1a cos (ax + b) + C,
    ∫ sec2 (ax + b) dx = 1a tan (ax + b) + C.


    For the exponential functions of the form f (px + q),
    apx + q dx = 1p 1ln a apx + q + C     where a > 0,   a ≠ 1.
    When a = e,
    epx + q dx = 1p epx + q + C.

    Example 5.
    Evaluate the following integrals.
    (a) ∫ 13 - 4x dx
    (b) ∫ √ 8x - 7   dx
    (c) ∫ e2x + 1 dx
    (d) ∫ 23x + 1 dx
    (e) ∫ cos2 x dx
    (f) ∫ sin 4x cos 3x dx

    Solution
    (a) ∫ 13 - 4x dx = 14 |3 - 4x| + C.

    (b) ∫ √ 8x - 7   dx = 18 [ 23 (8x - 7)12 ] + C
    = 112 (8x - 7)1 2 + C.

    (c) ∫ e2x + 1 dx = 12 e2x + 1 + C.

    (d) ∫ 23x + 1 dx = 13 1ln 2 23x + 1 + C.

    (e) We use   cos2 x= 12 (1 + cos 2x), then
    ∫ cos2 x dx = 12 ∫ (1 + cos 2x) dx
    = 12 (x + 12 sin 2x) + C
    = 12 x + 14 sin 2x + C.

    (f) We use sin 4x cos 3x = 12 (sin 7x + sin x), then
    ∫ sin 4x cos 3x dx = 12 ∫ (sin 7x + sin x) dx
    = 12 (-17 cos 7x - cos x) + C
    = - 114 cos 7x - 12 cos x + C.

    Exercise 10.1

    1. Evaluate the following integrals:

    2. (a) ∫ 4x8 dx
      (b) ∫ 3 2 x2 x   dx
      (c) ∫ (5x + 2) dx
      (d) ∫ sin2 x dx
      (e) ∫ x + 3 x   dx
      (f) ∫ ( 1 2x + 5) dx
      (g) ∫ ( ex + 2 x ) dx
      (h) ∫ ( 1 x5 + 4ex ) dx
      (i) ∫ ( 3 x + ex + 10 )dx
      (j) ∫ sin2 3x dx
      (k) ∫ sin 5x sin 2x dx
      (l) ∫ cos 7x cos 4x dx

    3. Evaluate the following integrals:

    4. (a) ∫ (1 - 2x)3 dx
      (b) ∫ sin (2πx + 7) dx
      (c) ∫ cos (3x - 7) dx
      (d) ∫ 35x - 2 dx
      (e) ∫ 1 7x - 6 dx
      (f) ∫ sin 2x sin x dx
      (g) ∫ sec2(2x + 3) dx
      (h) ∫ e7x - 3 dx
      (i) ∫ (1 + tan2x) dx

    10.2 Substitution Method

    We use the substitution method when the given integral can be transformed to the simpler integral by a change of variable. We describe how to get the integrals $$\int f(g(x))g'(x) dx$$ and $$\int \frac{g'(x)}{g(x)} dx$$ where g is differentiable and f is continuous. Then, we apply this method to the integral containing the trigonometric functions.

    Let y = f(x) be a differentiable function. The differential dx is an independent variable, the differential dy is given by

    dy = f' (x) (dx).

    Here, dy is a dependent variable that depends on x and dx.
    $$1. \int f(g(x))g'(x) dx $$
    Suppose the function g is differentiable and f is continuous.
    Let u = g(x). Then du = g' (x) dx, then
    $$\int f(g(x))g'(x) dx = \int f(u) du.$$
    To compute the integral by substitution method, the basic steps are as follows:
    Step 1 Select a substitution u = g(x).
    Step 2 Differentiate the substitution and arrange to write dx in term of du.
    Step 3 Substitute the expression from step 2, and transform the entire
                  integral from x-variable to u-variable form.
    Step 4 Integrate with respect to u.
    Step 5 Rewrite the answer in terms of x.



    Example 6.
    Evaluate each of the following integrals.
    (a) ∫ xex2 dx
    (b) ∫ sin4 x cos x dx
    (c) ∫ x2 ( x33 + 1 )3 dx
    (d) ∫ √ 1 - 5x   dx
    (e) ∫ 3x x2 + 5   dx
    (f) ∫ cos3 x dx

    Solution
    (a) ∫ xex2 dx
    Let u = x2. Then   du = 2x dx,
    12 du = x dx.
    xex2 dx = ∫ ex2 x dx
    = ∫ eu 12 du
    = 12 eu + C
    = 12 ex2 + C.

    (b)   ∫ sin4 x cos x dx .
    Let u = sin x. Then du = cos x dx .
    ∫ sin x4 cos x dx = ∫ u4 du
    = u55 + C = sin5 x5 + C.

    (c) ∫ x2 ( x33 + 1 )3 dx
    Let u = x33 + 1. Then du = x2 dx.
    x2 ( x33 + 1 ) 3 dx = ∫ u3 du
    = u44 + C
    = 14 ( x33 + 1 )4 + C.

    (d) ∫ √ 1 - 5x   dx
    Let u = 1 - 5x. Then du = -5 dx,
    - 15 du = dx.
    ∫ √ 1 - 5x   dx = ∫(1 - 5x)12 dx
    = ∫ u12 (- 15) du
    = - 1523 u32 + C
    = - 215 u32 + C
    = - 215(1 - 5x)3 2 + C.

    (e) ∫ 3x x2 + 5   dx
    Let u = x2 + 5. Then 12du = x dx
    ∫ 3x x2 + 5   dx = 3 ∫ (x2 + 5) 12 x dx
    = 3 ∫ u12 12 du
    = 3223 u32 + C
    = u 32 + C
    = (x2 + 5)32 + C.

    (f) ∫ cos3 x dx

    We use   cos2 x = 1 - sin2 x, then
    ∫ cos3 x dx = ∫ (1 - sin2 x) cos x dx.
    Let u = sin x, then du = cos x dx
    ∫ cos3 x dx = ∫ (1 - u2) du
    = u - u33 + C
    = sin x - 13 sin3 x + c.

    2. ∫ g ' (x)g (x) dx
    Let u = g (x). Then   du = g ' (x) dx.
    Thus
    g ' (x)g (x) dx = ∫ 1u du = ln |u| + C.

    g ' (x)g (x) dx = ln |g (x)| + C.
    ∫ tan x dx = ∫ sin xcos x dx = - ln |cos x| + C.
    ∫ cot x dx = ∫ cos xsin x dx = ln |sin x| + C.


    Example 7.
    Evaluate the following integrals.
    (a) ∫ 2x - 1x2 - x - 6 dx
    (b) ∫ x2 + 2x - 1x2 - 1 dx
    (c) ∫ 11 + ex dx

    Solution
    (a) ∫ 2x - 1x2 - x - 6 dx
    Let u = x2 - x - 6. Then   du = (2x - 1) dx.
    2x - 1x2 - x - 6 dx = ∫ 1u du
    = ln |u| + C = ln |x2 - x - 6| + C.

    (b) ∫ x2 + 2x - 1x2 - 1 dx
    We can rewrite as
    x2 + 2x - 1x2 - 1 dx = ∫ (1 + 2xx2 - 1 ) dx
    Let u = x2 - 1. Then du = 2x dx.
    $$\int \frac{x^2 + 2x -1}{x^2 - 1} dx = \int \left ( 1 + \frac{2x}{x^2 - 1} \right ) dx $$ = ∫ dx + ∫ 1u du
    = x + ln |u| + C
    = x + ln |x2 - 1| + C.

    (c) ∫ 11 + ex dx
    We can rewrite by multiplying and dividing by e-x.
    11 + ex dx = ∫ 11 + ex e-xe-x dx
    = ∫ e-xe-x + 1 dx.
    Let u = e-x + 1. Then   du = -e-x dx.
    11 + ex dx = ∫ e-xe-x + 1 dx
    = - ∫ 1u du
    = - ln |u| + C.
    = - ln (e-x + 1) + C.

    We now explain some integrals involving the trigonometric functions using method of substitution.

    (a)   ∫ sec x dx = ln | sec x + tan x + C
    Proof

    We have
    ∫ sec x dx = ∫ sec x sec x + tan xsec x + tan x dx
    = ∫ sec2 x + sec x tan xsec x + tan x dx.
    Let u = sec x + tan x. Then
    du = (sec x tan x + sec2 x) dx.
    So,
    ∫ sec x dx = ∫ 1u du
    = ln |u| + C
    = ln |sec x + tan x| + C.

    (b) ∫ csc x dx = - ln |csc x + cot x| + C
    Proof

    We have
    ∫ csc x dx = ∫ csc x csc x + cot xcsc x + cot x dx
    = ∫ csc2 x + cot x csc xcsc x + cot x dx.
    Let u = csc x + cot x. Then
    du = - (cot x csc x + csc2 x) dx.
    So,
    ∫ csc x dx = - ∫ 1u du = - ln |u| + C
    = - ln |csc x + cot x| + C.

    Exercise 10.2

    1. Integrate the following functions using the given substitutions.

    2. (a) 4x3 x4 - 1  ;   u = x4 - 1
      (b) cos3 x sin x ;   u = cos x
      (c) 1 x ln |x| ;   u = ln |x|
      (d) sin5 x cos x;   u = sin x
      (e) ln x x ,   x > 0;   u = ln x
      (f) x3ex4 ;   u = x4

    3. Use the substitution method to evaluate the following integrals.

    4. (a) ∫ x 1 - x   dx
      (b) ∫ (2x + 1)(x2 + x)7 dx
      (c) ∫ sin3x dx
      (d) ∫ x2 x3 - 2   dx
      (e) ∫ sec2 x tan x dx
      (f) ∫ x x + 1   dx
    5. Evaluate the integral ∫ x (x2 + 1) ln (x2 + 1) dx.

    10.3 Integration by Parts

    We use the method of integration by parts to integrate the product of two functions. In Section 10.1, we explain that the integral of the sum of functions is the sum of respective integrals. But the integral of the product function is not the product of respective integrals. Therefore, we use another technique and it is called the integration by parts.

    It based on product rule of differentiation,
    (u v)' dx = u ' v + u v' where u and v are functions of x. Then integration both sides, we get
    ∫ (u v)' dx = ∫ u' v dx + ∫ u v' dx.
    Applying the antiderivative in left hand side, we get
    u v = ∫ u' v dx + ∫ u v' dx
    or
    u v' dx = u v - ∫ u' v dx.
    Since u ' dx = du and v' dx = dv, we get

    u dv = u v - ∫ v du.

    To compute the integral of product of two functions using integration
    by parts, the basic steps are as follows:

    Step 1 Choose u and dv.
    Step 2 Differentiate u and integrated dv.
    Step 3 Substitute the expression from step 2 in
          ∫ u dv = uv - ∫ v du.
    Step 4 Simplify.


    Example 8.
    Evaluate each of the following integrals.
    (a) ∫ xex dx
    (b) ∫ ln x dx
    (c) ∫ x cos x dx
    (d) ∫ x sin x dx
    (e) ∫ ex sin x dx
    (f) ∫ x2 ln x dx

    Solution
    (a) ∫ xex dx
    Let u = x,   dv = ex dx.
    Then du = dx,   v = ∫ ex dx = ex.
    xex dx = xex - ∫ exdx
    = xex - ex + C.

    (b) ∫ ln x dx
    Let u = ln x,   dv = dx.
    Then du = 1x dx ,   v = ∫ dx = x.
    ∫ ln x dx = x ln x - ∫ x 1x dx + C
    = x ln x - x + C.

    (c) ∫ x cos x dx
    Let   u = x,   dv = cos x dx.
    Then du = dx,   v = ∫ cos x dx = sin x.
    x cos x dx = x sin x- ∫ sin x dx
    = x sin x + cos x + C.

    (d) ∫ x sin x dx
    Let   u = x,   dv = sin x dx.
    Then du = dx,
    v = ∫ sin x dx = - cos x.
    x sin x dx = -x cos x - ∫ (-cos x) dx
    = -x cos x + sin x + C.

    (e) ∫ ex sin x dx
    Let u = ex, dv = sin x dx.
    Then   du = ex dx,   v = ∫ sin x dx = -cos x.
    ex sin x dx = -ex cos x - ∫ (-cos )ex dx
    = -ex cos x + ∫ ex cos x dx.

    Let I = ∫ ex sin x dx. Then we have
    I = -ex cos x + ∫ ex cos x dx       (1)
    Let   u = ex,   dv = cos x dx.
    Then du= ex dx,   v = ∫ cos x dx = sin x.
    Thus
    ex cos x dx = ex sin x - ∫ ex sin x dx.       (2)
    Substituting (2) into (1), we get
    I = -ex cos x + ex sin x - ∫ ex sin x dx
    = ex (sin x - cos x) - I
    I = 12 ex (sin x - cos x) + C.
    Therefore
    ex sin x dx = 12 ex (sin x - cos x) + C.

    (f) ∫ x2 ln x dx
    Let u = ln x,   dv = x2 dx
    Then du = 1x dx,
    v = ∫ x2 dx = x33.
    x2 ln x dx = x33 ln x - ∫ x33 1x dx
    = x33 ln x - 13 x33 + C.
    = x3 ln x3 - x39 + C.

    Exercise 10.3

    1. Use the integration by parts to evaluate the following integrals.

    2. (a) ∫ s e-2s ds
      (b) ∫ ln(x + 1)dx
      (c) ∫ t sin 2t dt
      (d) ∫ x 2x dx
      (e) ∫ x cos 5x dx
      (f) ∫ ex cos x dx

    10.4 Partial Fraction Method

    We use the partial fraction method to integrate the rational functions.

    Example 9.
    Evaluate the integral ∫ 1x2 + 2x - 3 dx.

    Solution
    $$\int \frac{1}{x^2 + 2x -3} dx$$ We rewrite the rational fraction as
    $$\frac{1}{x^2 + 2x - 3} = \frac{1}{(x + 3)(x - 3)}.$$ However, we want this fraction as the sum of linear frractions as below.
    $$\frac{1}{x^2 + 2x - 3} = \frac{A}{x + 3} + \frac{B}{x - 1} $$ where A and B are constants that will be determined later. Then, it can be rewritten as
    $$\frac{1}{x^2 + 2x - 3} = \frac{A(x-1) + B(x+3)}{(x + 3)(x - 3)}.$$ Therefore,
    $$1 = A(x-1) + B(x+3)$$ $$1 = (A + B)x + (-A + 3B).$$ Equating the coefficients of corresponding powers of x, we get
    $$A + B = 0$$ $$-A + 3B = 1$$ which give $$A = -\frac{1}{4}$$ and $$B = \frac{1}{4}.$$ Therefore $$\frac{1}{x^2 + 2x - 3} = \frac{-\frac{1}{4}}{x + 3} + \frac{\frac{1}{4}}{x - 1} $$ Thus $$\int \frac{1}{x^2 + 2x - 3} dx =-\frac{1}{4} \frac{1}{x + 3} dx + \frac{1}{4} \int \frac{1}{x - 1} dx $$ $$= -\frac{1}{4} ln |x+3| + \frac{1}{4} ln |x-1| + C$$ $$= \frac{1}{4} ln \left | \frac{x-1}{x+3} \right | + C.$$

    Example 10
    $$\text{Evaluate \, the \, integral \,} \int \frac{1}{2x^2 + 3x + 1} dx.$$ Solution
    $$ \int \frac{1}{2x^2 + 3x + 1} dx.$$ First we write $$ \frac{1}{2x^2 + 3x + 1} = \frac{1}{(2x + 1)(x + 1)} = \frac{A}{2x + 1} + \frac{B}{x + 1}$$ and so $$\frac{1}{2x^2 + 3x + 1} = \frac{A(x + 1) + (B(2x + 1)}{(2x + 1)(x + 1)}$$ Therefore, $$1 = A(x + 1) + B(2x + 1).$$ when x = 1,
    $$1 = B(-1), \text{so}\, \, B = -1.$$ $$\text{When\,} x = -\frac{1}{2}, \, \, 1 = A(\frac{1}{2}), \text{so}\, \, A = 2.$$ $$\int \frac{1}{2x^2 + 3x + 1} dx = \int \frac{2}{2x + 1} dx + \int \frac{-1}{x + 1} dx $$ $$ = ln |2x + 1| - ln |x + 1| + C$$ $$= ln \left | \frac{2x + 1}{x + 1} \right | + C.$$

    Example 11.
    $$\text{Evaluate\,the\,integral\,}\, \int \frac{x^3 + x^2 - 4x}{x^2 -4} \,dx.$$ Solution
    $$ \int \frac{x^3 + x^2 - 4x}{x^2 -4} \,dx$$ We can rewrite as $$ \int \frac{x^3 + x^2 - 4x}{x^2 -4} \,dx = \int \left( x+1 + \frac{4}{x^2 - 4}\right)\,dx.$$ First, we write $$\frac{4}{x^2 - 4} = \frac{4}{(x+2)(x-2)} = \frac{A}{x+2}+\frac{B}{x-2}$$ and so $$\frac{4}{x^2-4} = \frac{A(x-2) + B(x+2)}{(x+2)(x-2)}.$$ Therefore, $$4= A(x-2) + B(x+2).$$ $$\text{When\,} x = 2,\, \, \, 4=B(4), \, \, \, \text{so}\, \, B=1.$$ $$\text{When\,} x = -2,\, \, \, 4=A(-4), \, \, \, \text{so}\, \, A=-1.$$ $$\int \frac{x^3 + x^2 -4x}{x^2-4}\,dx = \int (x+1)\,dx + \int \frac{-1}{x+2}\,dx + \int \frac{1}{x-2}\,dx$$ $$= \frac{x^2}{2} + x-ln|x+2| + ln|x-2| + C$$ $$= \frac{x^2}{2} + x + ln \left|\frac{x-2}{x+2}\right| + C.$$


    Example 12
    $$\text{Evaluate\,the\,integral}\, \int \frac{2x+1}{(x-1)^2} \,dx.$$ Solution
    $$\int \frac{2x+1}{(x-1)^2} \,dx.$$ We can rewrite as $$ \frac{2x+1}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2}$$ and so $$ \frac{2x+1}{(x-1)^2} = \frac{A(x-1)+B}{(x-1)^2}$$ Therefore, $$2x+1 = A(x-1) + B,$$ $$= Ax + (-A+B).$$ Equating the coefficients of corresponding powers of x, we get $$A=2\, \, \text{and}\, \, -A+B=1$$ which give B = 3.
    Therefore $$\frac{2x+1}{(x-1)^2} = \frac{2}{x-1} + \frac{3}{(x-1)^2}.$$ Thus $$\int \frac{2x+1}{(x-1)^2}\,dx = \frac{2}{x-1}\,dx + \frac{3}{(x-1)^2}\,dx$$ $$= 2\, ln|x-1| - \frac{3}{x-1} + C.$$


    Example 13. Find the function f(x) satisfying the equation
    $$f'(x) = \frac{x-1}{\sqrt{x}} \, \, \text{with}\, \, f(1) = 0.$$
    Solution
    $$f'(x) = \frac{x-1}{\sqrt{x}}$$ By integrating we get $$f(x) = \int \frac{x-1}{\sqrt{x}}\,dx = \int (x^{\frac{1}{2}} -x^{-\frac{1}{2}})\,dx$$ $$= \frac{2}{3}x^{\frac{3}{2}} - 2x^{\frac{1}{2}} + C.$$ Since f(1) = 0, it follows that
    $$f(1) = \frac{2}{3}(1)^{\frac{3}{2}} - 2(1)^{\frac{1}{2}} + C$$ $$0 = \frac{2}{3} - 2 + C $$ $$C = \frac{4}{3}.$$ Therefore $$f(x) = \frac{2}{3}x^{\frac{3}{2}} -2x^{\frac{1}{2}} + \frac{4}{3}.$$


    Example 14.
    Find the function f(x) satisfying equation
    $$f"(x) = \frac{e^x - e^{-x}}{2}, $$ with f'(0) = 1 and f(0) = 1.
    Solution
    $$f"(x) = \frac{e^x - e^{-x}}{2}$$ By integrating we get
    $$f'(x) = \int \frac{e^x - e^{-x}}{2} \, dx = \frac{1}{2}(e^x+e^{-x}) + C.$$ Since f '(x) = 1, it follows that $$f'(0) = \frac{1}{2}(e^0+e^0)+C$$ $$1 = 1+ C$$ $$C=0.$$ Again, by integrating we get $$f(x) = \int\frac{e^x+e^{-x}}{2}\,dx=\frac{1}{2}(e^x-e^{-x})+C.$$ Since f(0) = 1, it follows that $$f(0) = \frac{1}{2}(e^0-e^0)+C$$ $$1=0+C$$ $$C=1.$$ Therefore, $$f(x) = \frac{1}{2}(e^x+e^{-x})+1.$$

    Exercise 10.4
    1. Use the partial fraction method to evaluate the following integrals.
    2. $$\text{(a)}\, \, \int \frac{1}{2x^2+5x+3}\,dx$$ $$\text{(b)\,}\, \int \frac{2x-1}{(x-3)^2} \, dx$$ $$\text{(c)\,}\, \int \frac{x+1}{(2x+5)(x+4)}\,dx$$ $$\text{(d)\,}\, \int \frac{2x^2-1}{x^2-1}\,dx$$
    3. Find the function f(x) that satisfying the equation
    4. $$f'(x) = sin\, 4x\, cos\,2x\, \, \text{with\,}\, f(\frac{\pi}{2})=0.$$
    5. Find the function g(x) that satisfying the equation
    6. $$g'(x) = x^2e^{x^3}\, \, \, \text{with\,}\, g(0) = -\frac{2}{3}.$$
    7. Find the function h(x) that satisfying the equation
    8. $$h'(x) = \frac{x}{x^2-1}\, \, \, \text{with\,}\, h(2) = \frac{1}{2}.$$
    9. Find the function f(x) that satisfying the equation
    10. $$f''(x)=2x-1\, \, \, \text{with\,}\, f(0)=-1\, \, \text{and\,}\, f'(1)=2.$$
    11. Find the function g(x) that satisfying the equation
    12. $$g''(x)=x\,sin\,x\, \, \, \text{with\,}\, g(\frac{\pi}{2})=0\, \, \text{and\,}\, g'(0)=0.$$

    အခြားဖတ်စရာများ

    Contents

    1. Complex Numbers
    2. Mathematical Induction
    3. Analytical Solid Geometry
    4. Vector Algebra
    5. Permutations and Combinations
    6. Conic Sections
    7. Trigonometric Functions
    8. Logarithmic and Exponential Functions
    9. Application of Differentiation
    10. Method of Integration
    11. Application of Integrations